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1. Introduction 
 
Angular momentum is one of the fundamental notions of modern physics. It can be defined in 
classical mechanics, electromagnetism, quantum mechanics and quantum field theory and, although 
the mathematical expressions and observable phenomena linked to it are in each case different, the 
conservation of angular momentum is regarded as holding for any system which is invariant under 
rotation. It is not my intention to discuss here the differences between the various notions of angular 
momentum, but rather to underscore how, despite those differences, that concept today  maintains a 
strong identity as the "same" physical quantity. To quote a view from the scientific community: 

 "The concept of angular momentum, defined initially as the moment of momentum (L 
= r x p), originated very early in classical mechanics (Kepler's second law, in fact, 
contains precisely this concept.) Nevertheless, angular momentum had, for the 
development of classical mechanics, nothing like the central role this concept enjoyes in 
quantum physics. Wigner1 notes, for example that most books on mechanics written 
around the turn of the century (and even later) do not mention the general theorem of 
the conservation of angular momentum. In fact, Cajori's well-known "History of 

                                                 
1 Wigner 1967, p. 14. 
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physics"2 (1929 edition) gives exactly half a line to angular momentum conservation. 
That the concept of angular momentum may be of greater importance in quantum 
mechanics is almost self-evident. The Planck quantum of action has precisely the 
dimensions of an angular momentum, and, moreover, the Bohr quantisation hypothesis 
specified the unit of (orbital) angular momentum to be h/2π. Angular momentum and 
quantum physics are thus clearly linked.“3 

In this passage angular momentum is presented as a physical entity with a classical and a quantum 
incarnation. This situation is not peculiar to that notion, and there are a number of classical 
mechanical concepts which have been taken over into quantum theory without losing connection to 
their classical selves. I believe this to be a very important aspect of the relationship between 
mathematics and physics and in particular of the complex nature of physical-mathematical notions. 
Historically, such concepts do not appear because a physical content meets a mathematical form, 
but rather emerge from a coevolution of mathematics and physics making evident both the 
multiplicity within each discipline and the close correlation - at times even indistinguishability - 
between specific aspects of physical and mathematical practice, as well as of the philosophical and 
technological contexts in which they are embedded. It is because of this complex, composite 
character that physical-mathematical notions can be perceived by scientists as possessing a specific 
identity behind the many representation they can be encountered in - from Kepler’s area law to the 
quantum numbers of the Bohr-Sommerfeld atom. In the following pages, I shall tentatively explore 
this constellation by sketching the emergence of classical angular momentum and its translation into 
quantum-theoretical terms. 
 
 
2. Johannes Kepler's area law and Isaac Newton's parallelogram of forces 
 
Other than linear motion, rotations have attracted the attention of mathematically-minded 
philosophers since Antiquity. Although this was largely due to the evident regularities and 
outstanding cultural significance of heavenly motion, one must not forget that the stability of 
rotating bodies could also be inferred from everyday experience and was at the basis of  simple 
tools such as the potter's wheel or the spinning top, whose use is attested well before the emergence 
of geometrical or numerical representations of celestial motion.4 The practice of discus-throwing 
presupposed a highly refined understanding of the rotation of rigid bodies and flywheels were 
employed already in Antiquitiy to stabilize the motion of machines of various kind.5 Thus, it is not 
suprising that in pre-modern natural philosophical systems, especially but not only the Aristotelian 
one, circular motion had a special status as a "perfect" movement which partained to celestial 
entities.6 The geometrical models of celestial motion based on circles were the starting point for the 
development of modern mechanics and Newtonian gravitation - a development which ironically led 
to the rejection of the idea of the perfection of rotation in favour of a higher consideration of linear 
movement. While Nicholaus Copernicus had still adhered to the notion that celestial movements 
had a circular form, Johannes Kepler expressed them by means of ellipses.7 In his model, the 
stability of the Ptolemaic spherical cosmos found a new expression in the statement that the 
elliptical orbits of the planets were fixed both in shape and space orientation. Moreover, the 
movement of celestial bodies along their path was such, that the areas spanned by the line 
connecting a planet to the Sun were proportional to the time elapsed, despite the fact that the 
distance between the two bodies and the velocity of the planet constantly changed. As we shall see, 
the habit of expressing the constancy of rotational motion in terms of areas will remain alive until 
the 19th century, so that what is today referred to as the conservation of angular momentum at that 
                                                 
2 Cajori 1929. 
3 Biedenharn, Louck and Carruthers 1981, p. 1. 
4 Hurschmann 1999; Scheibler 1999. 
5 Decker 1997; Krafft 1999, esp. col. 1087. 
6 Daxelmüller 1999. 
7 Dugas 1988, p. 110-119, Kepler 1628, p. 410-412.   
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time took the form of a principle of conservation of areas. 
Before proceeding in our exploration of the methods employed in the early modern period to 
formalize and analyse rotations, we have to make a clear distinction between the graphic 
representation of mechanical and dynamical quantitites, their analytical expressions and the abstract 
mathematical structure which are associated with them today.8 The angular momentum of a 
classical mechanical system is mathematically represented today by an axial vector in three-
dimensional space, which can be manipulated according to the rules of vector algebra and is 
graphically depicted as an oriented segment in space. Vector algebra was only developed from the 
middle of the 19th century onward and played no role in the emergence of classical mechanics, but 
the representation and manipulations of some physical quantities (motion, force) by means of 
oriented segments was current already in the 17th century.  
The composition of forces with the parallelogram rule had  been in use since the Renaissance and 
was further developed by Isaac Newton.9 To compose the effect of two forces acting on the same 
body, Newton represented them by two segments, each with length and direction corresponding to 
the motion which the force would impart on the body by acting on it for a given time.10 The 
segments were drawn as the sides of a parallelogram whose diagonal represented the combined 
effect of the two forces. In this procedure force was represented and manipulated geometrically as 
the motion it could impart to a body and this was in turn connected to an idea of force which 
Newton had taken over from medieval tradition. It is not here the place to discuss Newton's 
complex and at times ambiguous idea of force: suffice to say that, while  innovative, it still 
embedded the earlier concept of a discrete "impetus" which, when transmitted to a body, set it into a 
motion of direction and extension corresponding to its own entity.11  
Although Newton employed a geometrical representation of forces and motions, he never used it for 
angular momentum, for the very simple reason that no such notion can be found in his work - not 
even where he discussed the problem of the precession of the Earth's axis.12 According to the 
analysis of Clifford Truesdell, the first author to speak not only of a "moment of rotational motion", 
but also of its "conservation" ("conservationem momentii motus rotatorii") was Daniel Bernoulli, 
who did so in a letter written in February 1744.13 Bernoulli had discussed the motion of a ball 
sliding within a rotating tube, demonstrating that what we regard as the absolute value of the 
angular mometnum of the whole system could not be changed by the mutual interaction of its parts. 
By referring to these results as a conservation of “moment of rotational motion”, he was using an 
expression, the “moment” of a force, which had been developed in the context of the theory of the 
lever. The effect of a force of intensity I acting on a lever is proportional both to I and to the 
distance L of its point of application from the fulcrum. The "moment" of that force acting in that 
specific configuration is equal to the product IL and gives a scalar measure of the effect of the force. 
In the late Renaissance this notion was extended to indicate the effect of a force acting not only on a 
lever, but on a generic body of which a point remained fixed (e.g. a pendulum).14 Daniel Bernoulli 
extended it further, but still regarded the moment of rotational motion as a scalar quantity and did 
not associate any direction to it.  
 
3. Leonard Euler on the rotation of rigid bodies 
 
While Kepler and Newton had mainly dealt with systems of mass points interacting with each other, 
mathematicians of the 18th century took up the task of mathematizing the motions of extended 
                                                 
8 This is a very complex subject that has been extensively treated in the historical literature (Caparrini 1999, 2002; 
Crowe 1985) and I will only deal with it as far as necessary for the present investigation. 
9 Dugas 1988, p. 123-127, 151-153, 207-209. 
10 Dugas 1988, p. 208-209, Kutschmann 1983, p. 126-127. 
11 Kutschmann 1983, p. 18-19, 120-129. 
12 Dobson 1998, especially p. 132-133, 136-138. Truesdell 1964b, p. 244-245. 
13 Truesdell 1964b, p. 254-256, quote from Bernoulli 1744, p. 549. 
14 Truesdell 1964b, p. 248-252. 
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bodies on which forces could be applied at the same time at different places. Decisive contributions 
to this field were given by Leonard Euler, who was the first to write down the general equations of 
motion for an extended body.15 Starting  from the recognition that any infinitesimal motion of a 
body can  be decomposed into a translation and a rotation, Euler developed in a series of papers the 
mathematical analysis of the movement of rigid bodies and wrote down the differential equations 
governing it.  In his writing he offered different derivations of his results, and I shall focus on the 
latest one (1775), which was also the most accomplished. To express mathematically the state of a 
body Euler introduced the three angles which today still bear his name, and thanks to which a 
parametrisation of any rotational motion is possible.16 These new quantities allowed him to 
transform a geometrical description given in terms of axes of rotation and space positions into an 
analytical one based on trigonometric functions. This was a very important step, because it allowed 
Euler and later authors to at least partly discard the geometrical language of rotation in favour of the 
purely algebrical ("analytical") one. It is not necessary for us to follow Euler's derivation and it will 
suffice to state the equations as he wrote them in 1775: 

∫dM(ddx/dt2) = iP 
∫dM(ddy/dt2) = iQ 
∫dM(ddz/dt2) = iR 
∫zdM(ddy/dt2) - ∫ydM(ddz/dt2) = iS 
∫xdM(ddz/dt2) - ∫zdM(ddx/dt2) = iT 
∫ydM(ddx/dt2) - ∫xdM(ddy/dt2) = iU17 

 
In these formulas dM represents an infinitesimal mass element of the body at the position with 
Cartesian coordinates (x,y,z); ddx/dt2 (i.e. d²x/dt²) etc. are the corresponding accelerations; P, Q and 
R are the resultant external forces acting in the directions of the three axes x, y and z; S, T and U are 
the resultant “moments” of the external forces, again taken in the directions x, y and z.  
Euler used here the notion of "moment" like Daniel Bernoulli had done, i.e. in a scalar sense, and so 
did not  regard S, T, and U as components of a single physical entity,  but rather as three separate 
moments computed with respect to the three axes. Euler's first three formulas state the relationship 
between force, mass and acceleration, while the last three expressions formally correspond to what 
we today describe as the relationship between the (vectorial) moment of external force (Mx, My, Mz) 
and the time derivative of (vectorial) angular momentum (Jx, Jy, Jz), whose components are defined 
in the same way as in Euler's equations.18 Therefore, from a purely analytical point of view, one 
may claim that Euler had written down both the expression and the dynamics of the angular 
momentum of a solid body. Moreover, the equations implied that, in absence of external moments 
of force, the value of the angular momentum would be conserved.  
Howerver, Euler did not consider the equations as referring to the evolution of the three components 
of the same quantitiy. Indeed, he did not even seem to regard the individual expressions as 
particularly significant. In a later paper he discussed the fact that the effects of the moments S, T 
and U could indeed be composed in the same way as forces, i.e. using the rule of the 
parallelogram.19 Thus, it seems that he was becoming aware that his analytical expressions could be 
somehow translated back into a geometrical form. However, at that time Euler was already very old 
and blind and therefore could not further pursue this research. The fact that the great mathematician 
only became aware at such a late date of this aspect of the subject which he had studied for so long 
is in my opinion the best evidence that such changes of perspective are anything but trivial.  
 
                                                 
15 Blanc 1968; Caparrini 1999; Truesdell 1964a, 1964b, on which the following discussion is largely based. 
16 Euler 1775, p. 208-211, i.e. p.103-104. 
17 Euler 1775, p. 224-225, i.e. 113. 
18 Davis 2002, esp. p. 255-256. 
19 Caparrini 2002, p. 154-155. 
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4."Conservation of area" and "invariable plane" in French mathematics (1788-1790) 
 
Euler's equations were later taken up by other authors, embedded in new systems of mechanics and 
eventually rederived according to new principles.20 In his "Mechanique analytique" (1788) Joseph 
Louis Lagrange expressed them in the formalism that still carries his name and in which the 
"vectorial" character of the equations was less evident than in Euler's original form.21 However, 
Lagrange noted that the new formalism allowed to deduce a number of principles of conservation 
which had hitherto been regarded separately: "the conservation of living force, the conservation of 
the movement of the centre of gravity, the conservation of the moment of rotation or principle of the 
areas and the principle of least action".22 Lagrange went on to explain that the principle of 
conservation of moment of rotation (i.e. of areas) had been derived independently by Leonard Euler, 
Daniel Bernoulli and Patrick d'Arcy.23 We have already seen what Euler and Bernoulli had worked 
on. According to Lagrange, d'Arcy had formulated a special case of this result in terms of areas: "la 
somme des produits de la masse de chaque corps par l'aire que son rayon vecteur décrit autour d'un 
centre fixe sur un même plan de projection est toujours proportionelle au temps".24 Lagrange 
regarded d'Arcy's formulation as "généralisation du beau théorème de Newton", which in turn was a 
generalisation of Kepler's law of areas, and, when deriving the result with his own methods, he 
referred to it as "principle of areas".25 Thus, by the late 18th century, the notion that a freely rotating 
system was subject to a specific conservation law was present, but the law was mainly regarded as 
concerning one or more scalar quantities. It was Pierre Simon Laplace who drew attention to the 
fact that the principle of areas also implied the conservation of a preferred direction of the system, 
and he expressed this fact geometrically in terms of an "invariable plane" of rotation, which for us 
corresponds to the plane perpendicular to angular momentum.26  
As Euler had done, Laplace wrote down the expression of what we regard as the three components 
of angular momentum and noted that they were constant in absence of external moments of force. 
He also remarked, like Lagrange had done, that these quantites could be interpreted in terms of 
areas and that one could choose the coordinate system in such a way that two of the constant 
quantities would be zero, while the third one had the highest possible value of any of them. It is 
easy to interpret this result by conceiving of the three quantities as components of a vector, but 
Laplace chose to adhere to the "area" interpretation. This may appear somehow forced to a modern 
reader, but for someone like Laplace who had been working many years on celestial mechanics the 
connection between his new result and Kepler's law probably appeared rather intuitive, while the 
notion of associating an oriented segment to some rather abstract analytical expression did not. It 
would be incorrect to say that Laplace rejected geometrical interpretations of his analytical 
formulas: he only  chose a different one that we do today. As we shall see in the next section, the 
first one to propose a geometrical interpretation similar to the modern one was the French 
mathematician Louis Poinsot. 
 
                                                 
20 Grattan-Guinness 1990, p. 270-301. 
21 Truesdell 1964b, p. 245-246. 
22 "théorème connus sous les noms de conservation des forces vives, conservation du mouvement du centre de gravité, 
de conservation des moments de rotation ou principe des aires, et de principe de la moindre quantité d'sction" Lagrange 
1853, p. 257. I quote from a later edition of Lagrange's work, which however does not present relevant difference to the 
first one as far as our subject is concerned. 
23 Lagrange 1853, p. 259-261. 
24 Lagrange 1853, p. 260. 
25 Lagrange 1853, p. 260, 278-288. 
26 Laplace, 1799, p. 65-69. Laplace’s work is discussed by Caparrini 2002, p. 156-157; Grattan-Guinness 1990, p. 317-

318, 360. Grattan-Guinness writes that Laplace had “in effect” shown some properties of angular momentum – it is 
important to note that Laplace made no use of such notion. 
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5. Louis Poinsot's statics and the notion of a couple (1803)  
 
Louis Poinsot had set out to become an engineer first at the École Politechnique and then at the 
École des Ponts et Chaussés, but he eventually gave up his study to pursue his interest in 
mathematics and in 1804 became a teacher of that discipline at the Lycée Bonaparte.27 In 1803 he  
published a "Treatise on Statics" which, although written for candidates to the École Polytechnique, 
was much appreciated by all engineers and also by some French academics.28 Thanks to that work 
and to a series of memoires on rotational motion, in 1809 he obtained the post of inspector general 
at the University and in 1813 was elected to the Academy. He remained active in research and 
teaching at the university and the École Poythechnique, but was often in opposition to the analytical 
school of mathematics because of his geometrical approach to mechanics. In the course of the 19th 
century his work found increasing appreciation among French mathematicians. In 1858 Joseph 
Louis François Bertrand stated in a discourse:29  

Nul oserait [...] aujourd'hui contester l'importance et la hauteur des travaux mécaniques 
de Poinsot: il semble évident déja que la postérité doit placer l'illustre auteur de la 
'Statique' bien au-dessus des contemporaines, jadis plus célèbre, qui l'ont si longtemps 
méconnu. Poisson disait, au sein même, je crois, du Bureau des longitudes: 'si Poinsot 
se présentait á l'École polytechnique, ma conscience ne me permetterait pas de l'y 
admettre'30 

 Poinsot's "Treatise on Statics", which reached its 12th edition in 1877, almost twenty years after the 
death of its author, offered a formulation of classical mechanics relying on geometrical 
representations, as advocated by Gaspard Monge of whom Poinsot was a follower. However, 
Poinsot not only gave a different presentation to old material, but also used the new form to develop 
innovative and heuristically fruitful physical mathematical notions.  
At the centre of the book stood the concept of a couple, i.e. a system of two equal and opposite 
forces acting on two points of the same body.  The effect of a couple could never be reduced to that 
of a single force, as it corresponded to a rotation around an axis perpendicular to the plane of the 
two forces.31 The intensity of the effect of a couple was measured by the (scalar) moment of the 
couple (i.e. intensity of the forces times their distance) and Poinsot proposed to represent that 
moment geometrically, by means of an oriented segment perpendicular to the plane of the couple.32 
Poinsot showed how, thanks to this representation, the effect of two couples could be composed by 
using the rule of the parallelogram, exactly as in the case of forces. Using the notion of a couple 
Poinsot showed that the total effect of a system of forces on a body could always be represented as 
the combination of a single resultant force and a single resultant couple. We do not need to go 
further into his theory, but it is important to stress that, despite its geometrical form, it was by no 
means "intuitive" in the sense that it appealed to some notions immediately linked to everyday 
experience, as in the case of force and linear motion. While the representation of forces by means of 
oriented segments was immediately suggested by the motion they impressed, no such obvious 
interpretation existed for couples and rotations. As we have seen, momenta were usually conceived 
as scalar quantities. Like Laplace's "principle of areas" and "invariable plane", Poinsot's theory was 
the translation into geometrical forms of a complex, abstract notion that had been developed by 
analytical means.  Neither of the alternative "geometrisations" of the dynamics of rotating bodies 
was more immediate and intuitive than the other: they were simply linked to different physical 
systems which the authors had in mind, on the one side the Solar system, on the other the spinning 
top. Poinsot's theory proved immediately succesful with engineers, who were capable of dealing 
well with geometrical entities, while Laplace's method was more appreciated by mathematicians.  
 
                                                 
27 On Poinsot's life and work see: Grattan-Guinness 1990, p. 190-191, 358-364, 1154-1157, 1233-1236; Taton 1975. 
28 Poinsot 1803. 
29 Bertrand 1858. For the context of the text see: Tobin 2003, p. 242-244. 
30 Bertrand 1858, p. vii-viii. 
31 Poinsot 1803, p. 47. 
32 Poinsot 1803, p. 58-59. 
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6. Louis Poinsot's dynamics and the "conservation of forces and moments" 
(1806) 
 
As befit its subject, the treatise on statics only dealt with bodies in equilibrium, but already in 1806 
Poinsot started applying his approach to dynamics. In a memoire presented to the Academy  he 
summarized his theory of couples, stressing  how the geometrical representation of the moments of 
a couple could be used to represent and manipulate the moments of any force.33 He showed how his 
method allowed to reproduce all results present in Laplace's mechanics and finally claimed that, 
thanks to the new formalism, "hidden forces" had emerged: "Que ces sortes de produits qu'on 
appelle momens n'étaient au fond que la mesure de certaines forces cachées que les couples ont 
mises en évidence."34 
The meaning of this statement became somehow clearer in the third part of the essay, where the 
theory was applied to dynamics.35 When a body moves freely in space in a straight line, said 
Poinsot, the "force" animating it remains constant in intensity and direction, and the same applies to 
to its moment. This "conservation of forces" and "conservation of moments" was valid for any 
system of bodies interacting only with each other. At this point, the term "force" was used in a 
slightly different meaning than in the treatment of statics, but Poinsot did not elaborate on this and 
offered a purely verbal "raisonnement" to prove the conservation.36 The reasonement was based on 
the idea that, in each mutual interaction, the elements of the system only exchanged forces and 
moments with each other, so that the sum remained constant:  

On voit donc que, dans un system de corps qui ont reçu des impulsions primitives, et 
qui réagissant d'une manière quelconque les unes sur les autres, la somme de toutes les 
forces qui les animent, estimées suivant une même droit, est la somme de leurs momens  
par rapport à un même axe fixe quelconque, demeurent constamment mesmêmes.37  

Poinsot stated that this conservation corresponded to two analytical principles: the conservation of 
the motion of the centre of gravity and the conservation of areas. These conserved quantities were 
expressions of "powers" ("puissances") imparted to the bodies and conserved in them.38 Poinsot 
used a notion of "force" or "power" similar the one we found in Newton and such "Newtonian" 
concepts were not uncommon in France: Laplace, for example, used them.39 The novelty of 
Poinsot's approach was that he had extended that treatment to moments of forces and in doing so he 
had revealed new, "hidden forces", i.e. physical entities analogous to impulse but linked to 
rotational motion and capable of being represented by a directed segment. In this way, the 
conservation of area became the conservation of a new physical mathematical quantity. Poinsot did 
not regard analytical expressions as defining the quantity, but only as giving its measure.40 To sum 
up, Poinsot had taken the results of the analytical investigations of rotations and transformed them 
into a new geometrical form which brought to light an analogy between linear motion and rotation. 
He interpreted this analogy as the discovery of a “hidden” physical entity  whose measure was 
given by the moment of the “force” animating a rotating body.  
 
                                                 
33 Poinsot 1806. 
34 Poinsot 1806, p. 345. 
35 Poinsot 1806, p. 359-365. 
36 Poinsot 1806, p. 360-361. For a discussion of Poinsot’s proof see Caparrini 1999, p. 51-53. 
37 Poinsot 1806, p. 361. 
38 Poinsot 1806, p. 346. 
39 Dugas 1988, p. 354-360. 
40 Poinsot 1806, p. 362. 
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7. Reception and critique of the theory of couples. Poinsot's "New theory of 
rotational motion" (1834) 
 
French mathematicians appreciated Poinsot's approach, but not his geometrical formalism or his 
physical interpretation, and tried to give alternative analytical formulations of his results. Silvio 
Caparrini has given a thorough account of how, in studying rotation, scholars started developing an 
analytical formalism which in many ways corresponded to vector algebra, and I shall only sum up 
his remarks, which offer a clear example of coevolution of physics and mathematics.41 Simeon 
Denis Poisson hardly mentioned couples and gave no importance to the notion of "momentum", 
Jacques Philippe Marie Binet introduced the notion of "aeorial velocities",  Jacques Frédéric 
Français developed an analytical theory employing Poinsot's idea of the conservation of couples and 
mentioned the conservation of moments of rotation, but only in terms of the three components.42 
Thus, while Poinsot's results were slowly embedded in the analytical context, his idea of a new 
physical mathematical notion found little attention. 
In 1826 Augustine Louis Cauchy published a series of essays on his new theory of "momens 
lineares", in which he reformulated and partly generalized Poinsot's geometrical theory of moments 
of force.43 Cauchy showed hot to construct the "vectorial" moment of any quantity represented by a 
directed segment and mentioned the quantity of motion as an example, although he only treated 
exensively the case of moments of forces.44 Poinsot accused him of having simply translated his 
own theory of couples and moments into another form and a dispute ensued in whose course 
Poisson defended Cauchy by claiming that Poinsot's result had already been obtained by Euler and 
Laplace. Poinsot replied to this accusation  by underscoring the importance of giving physical 
content to analytical expressions. He summed up the results by Euler and Laplace and then stated: 

Mais il faut bien remarquer ici que ces théorèmes ne constituent point la composition 
proprement dite des moments. Cette composition n'a été, et je diraei même, n'a pu être 
connue que par la théorie des couples. Et en effet, ce qu'on appelait le moment d'une 
force par rapport à un point, ou un axe fixe, n'était jusque-là, pour les géomètre, qu'une 
simple expression  de calcul, un produit abstrait de deux nombres, dont l'un marque une 
certain force, et l'autre une certaine ligne; et il me semble qu'il ne pouvait venir à 
personne l'idée de chercher des lois de composition, c'est-à-dire, des lois d'équilibre 
entre de tels produits. [...] il fallait une notion statique, qui manquait alors aux 
géomètres, et cette notion est celle du couple.45 

Poinsot was here of course arguing "pro domo sua", but the best proof that his geometrical physical 
interpretation of previous analytical results was an original, fruitful contribution to the science of 
mechanics was the fact that, thanks to it, he could bring forward a "New theory of the rotation of 
bodies" ("Théorie nouvelle de la rotation des corps", 1834) for which he is mostly remembered 
today. In 1834 Poinsot presented his work to the Paris Academy and then published it as a short 
memoire in which he only made use of geometrical arguments expressed in verbal form: no 
analytical formulas were present.46  In this text he employed his methods of geometrical 
representation to express the motion of a freely rotating body in terms of two cones along which the 
instantaneous axis of rotation of the body moved. Almost twenty years later, in 1851, he published a 
book with the same title of the memoire in which the previous results were expressed also in 
analytical form and expanded upon.47 In this later text Poinsot took up again the subject of 
conservation of forces and moments, which he here referred to as "conservation of forces and of 
couples".48 
                                                 
41 Caparrini 2002. 
42 Caparrini 2002, p. 160-162, 167-170; Grattan-Guinness 1990, p. 364-365, 368-370; Français 1813, p. 21-23. 
43 Caprrini 2002, p. 171-172, Grattan-Guinness 1990, p. 1154-1157. 
44 Cauchy 1826. 
45 Poinsot 1827, p. 4-5. 
46 Grattan-Guinness 1990, p. 1233-1235; Poinsot 1834a. 
47 Poinsot 1951b. 
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French mathematicians once again showed more interest in translating Poinsot's theory into 
analytical terms than in further developing his geometrical approach and his ideas of new conserved 
"forces" associated to rotations. However, the new theory of rotational motion was appreciated by 
engineers and won special praise from Léon Foucault, best known for his demonstration of the 
rotation of the Earth by means of a pendulum.49 Two of Foucault's devices - the pendulum and the 
gyroscope - play a very important role in our story and I shall discuss them in the next section. 
 
8. Foucault's pendulum, his gyroscope and the English reception of Poinsot's 
theory (1851-1855) 
 
Jean Bernard Léon Foucault, self-taught natural philosopher and inventor, had achieved his first 
natural philosophical recognition thanks to experiments on the velocity of light.50 Around 1850 he 
conceived the idea of building a large pendulum whose plane of oscillation would slowly change in 
orientation with respect to a terrrestial observer because of  the rotation of the Earth. Foucault 
experimented at first in his own basement, but was then allowed  to set up his pendulum at the Paris 
Observatory and in February 1851  presented his results to the Academy: the measured daily 
deviation of the oscillation plane from the terrestrial vertical was given by a simple formula in 
which the sine of the angle expressing the local latitude appeared. Foucault's result were greeted 
with interest and the experiment was repeated in the Paris Pantheon for the broader public: the 
experiment was an instant success and was soon replicated  both in France and abroad. A pendulum 
was swinging in London already in early April,  a few months later also in many other British 
towns. 
However, Foucault's pendulum was much more than a popular demonstration in which a scientific 
theory could be shown to correspond to experience: while the motion of the pendulum did indeed 
represent  well-established astronomical and mechanical knowledge, it did so in a particulary simple 
form which not only was  immediately evident to the eye (as long as the pendulum was long 
enough), but could also be expressed  in a very elementary mathematical form, i.e. a sinus factor. 
Yet the analytical theories of rotations showed none of that simplicity and French mathematicians 
felt  challenged to relate the  simplicity of the pendulum to the complexity of the formulas. In other 
words, a tension between two different representations of the laws of rotation - the pendulum and 
the equations -  had been constructed and now had to be resolved, possibly without declaring either 
the equations or the pendulum as wrong. As we shall see, this was possible thanks to Poinsot's 
theory of rotations. 
In the short memoire discussing his experiments, Foucault had only offered a very sketchy 
argument to justify the sine factor: a pendulum at the Pole would have an oscillating plane which 
remained constant while the earth rotated under it, and thus would appear to a terrestrial observer a 
making a complete 360° rotation each day.51 However, a pendulum standing at a generic latitude 
would be forced to rotate along with the earth, and thus would have a more complex motion, which 
Foucault regarded as a problem for mathematicians to solve: "Mais quand on descend vers nos 
latitude, le phénomene se complique d'un élément assez difficile à apprécier et sur le quel je 
souhaite bien vivement l'attention des géometres."52 He claimed to have performed an approximate 
computation leading to the prediction of the sinus factor which the experiment confirmed. A few 
days later Jacques Binet, who as we saw had written a treatise on rotational motion, published a 
short note in which he, as a representative of the "géometres", rose to the challenge posed by 
Foucault.53 He described Foucault's results as "unexpected" ("inattendu"), and continued: "En me 
consultant, l'auteur [i.e. Foucault] désirait savoir à quel point le résultant mécanique auquel il 
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arrivait s'accordait avec la theorie mathématique et avec les déductions obtenues par les 
géomètres."54 Binet explained that Laplace had devoted some attention to similar subjects, but 
without deriving any relevant results and that: "Poisson á traité ce sujet [...]; cependant ce nétait pas 
l'object spécial de ce grand géometre, et il ne s'est pas occupe qu'incidemment".55 After this 
cautionary statement, he went on to state - possibly not without some embarassement - that Poisson 
had claimed that the force perpendicular to the plane of oscillation was too small to have an 
appreciable effect on the pendulum, and concluded somehow lamely: 

Cette conclusion parait contraire aux expériences de M. Foucault; mais le passage que je 
viens de citer permet un doute: Poisson ne rapporte pas le calcule de la force dont il 
parle, et d'ailleurs il n'est pas suffisant d'avoir reconnu qu'une force perturbatrice est 
très-petite pour conclure qu'elle ne produira qu'un effet insensible après un grand 
nombre d'oscillations.56  

He then started an analysis of the problem in verbal form in which he made use of Poinsot's 
methods, considering the rotation of the pendulum as represented by a vector which could be 
decomposed into two parts, one of which was linked to fictive centrifugal forces that could be 
regarded as causing the pendulum to deviate.57 One week later Binet complemented his first 
memoire with the relevant analytical formulas written in Poisson's notations, and recovered the 
desired sine factor.58  
At the same time, Poinsot published a short note in which he offered no formulas, but a physical 
interpretation of the pendulum experiment in terms of the notions on which he had built his 
dynamics of rotation: he explained that it was misleading to regard the movement of the pendulum 
as due to some force because the phenomenon did not "fundamentally" ("au fond") depend on 
gravity or any other force.59 The key feature of the pendulum, explained Poinsot, was not that its 
plane of oscillation moved, but that it remained constant, or rather attempted to remain as constant 
as possible under given conditions. It would be interesting, he continued, to construct a device 
whose plane of rotation would remain perfectly invariant with respect to "absolute space".60 He 
described such an instrument, which involved an oscillating spring, and explained that, in this case, 
the "couple animating [the device] in the beginning" would be conserved.61  
Thus, Poinsot interpreted Foucault's pendulum as a partial expression of the conservation of couples 
on which he had long since attracted attention, and proposed a new experiment demonstrating the 
conservation in perfect form. Foucault apparently did not build Poinsot's spring-contrievance, but 
he did construct an instrument which represented Poinsot's conservation of couples in the most 
perfect form: the gyroscope. Foucault realized this device one year after the pendulum, in 1852, and 
he did so by employing Poinsot's theory of rotation, and possibly also by  discussing the problem 
with him in person.62 The gyroscope, which had already been conceived by other authors, is an 
instrument which is build and set up in a frame in such a way, as to be able (at least ideally) to 
rotate free from the action of gravity and of friction. Under such ideal conditions, of which Foucault 
managed to give an extremely good approximation, the "couple" of the device remained constant in 
intensity and direction, and therefore the instrument could be seen to mantain always the same 
orientation with respect to the fixed stars. The idea of the gyroscope was not new, and other scholars 
and practitioners worked at building one, yet Foucault was the first one to present a working model 
to the Paris Academy and in 1854 he travelled to England and demonstrated the device at a meeting  
of the British Association for the Advancement of Science.63 
Foucault's experiments had started an interest in rotations both in academic circles and among the 
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broader public and brought attention also to Poinsot's theory of rotation: as we have seen, the 
expanded version of his treatise on the subject was published in 1851, possibly in context of the 
enthusiasm for the pendulum, and a second printing came out a year later, as the gyroscope 
appeared.64 However, the physical notions that Poinsot had associated to his formalism did not gain 
any followers in France and so, to follow the emergence of angular momentum, we shall have to 
move our attention to Britain. 
 
 
9. The theory of couples in Great Britain and the definition of "angular 
mometum" by Robert Baldwin Hayward (1856) 
 
In the same year in which the French original of Poinsot's "New theory of the rotation of bodies" 
(1834) was published, an English version of the work appeared under the title "Outlines of a new 
theory of rotatory motion".65 The English translator had added a commentary and also appended to 
the booklet the translation of those passages or Poinsot's memoire from the year 1806 which dealt 
with the conservation of forces and moments. Poinsot's avoidance of analytical computations made 
his work particularly suitable for Brisish readers. An early reception of Poinsot’s theory of rotation 
took place in Ireland, where a reform of mathematics had been started in 1813.66 In 1844 James 
MacCullagh lectured at Dublin university on the theory of couples and also expanded on Poinsot's 
results.67 He made use of analytical methods, but also took over the Frenchman's interpretation of 
rotational motion in terms of a conserved couple.68 In 1845 and 1848 and William Rowan  Hamilton 
presented to the Royal Irish Academy two papers in which he discussed the application of his 
method of quaternions to Poinsot's and MacCullagh's results.69  The theory of couples also appeared 
in other works, as for example the "Mathematical principles of mechanical philosophy" (1836) by 
John Herny Pratt.70 However, in these works no particular emphasis was put on the physical 
quantity which Poinsot had claimed to have discovered and which he had referred to as a conserved 
"force", "moment" or "couple" associated to the rotational motion of a body. Indeed, both 
MacCullagh and Hamilton followed rather an analytical than a geometrical approach. The first 
author to give prominence - and a new name - to Poinsot’s “conserved couple” was the 
mathematician Robert Baldwin Hayward.71 Hayward had studied in London and Cambridge and 
had been 4th wrangler in the 1850 Tripos, thus being fully immersed in the Cambridge style of 
mathematical and physical education, which gave particular prominence to Newton’s geometrical 
approach to calculus and to the notion of force as impulse.72 Hayward would later become a 
schoolmaster in mathematics, but in 1856 he was in Cambridge presenting to the Philosophical 
Society a paper on rotational motion in which he introduced “angular momentum”, discussing 
Foucault's pendulum as an example. 73 His paper started with two quotations by Poinsot on the 
necessity of going beyond analytical formulas to pursue science and continued: "My object is not so 
much to obtain new results, as to regard old one from a new point of view which renders all our 
equations directly significant."74  
Hayward offered a treatment of the motion of a three-dimensional body which made use of analysis, 
but at the same time he refined and exploited the geometrical-physical notions introduced by 
Poinsot. The first part of the paper was purely mathematical, showing how to manipulate quantities 
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which we would call vectors and axial vectors.75 At the beginning of the second part, the author 
wrote:  

[...] since every system of forces is reducible to a single force and a single couple, we 
have to investigate the effects of that force, and the effects of that couple. Now we know 
that the resultant force determines the motion of the centre of gravity of the system, be 
the constitution of the system what it may. In like manner the resultant couple 
determines something relatively to the motion of the system about its centre of gravity, 
which in the case of an invariable system defines its motion of rotation about that point, 
but which in other cases is not usually recognized as a definite objective magnitude, and 
has therefore no received name. This defect will be remedied by adopting momentum as 
the intermediate term between force and velocity, and by regarding as distinct steps the 
passage from force to momentum and that from momentum to velocity. In accordance 
with this idea we proceed to show that as in our first problem we shall be concerned 
with the magnitudes, force, linear momentum or momentum of translation, and linear 
velocity or velocity of translation, so in the other we shall be concerned with the 
corresponding magnitudes, couple, angular momentum or momentum of rotation, and 
angular velocity or velocity of rotations.76 

Hayward interpreted Poinsot's theory by resolving what he perceived as a tension between velocity 
and force (i.e. between movement and its cause) by introducing the notion of  momentum, and in 
particular of angular momentum. In this way he set a new, abstract representation of rotational 
movement which had emerged in analysis and had been geometrized by Poinsot on the same 
footing as the old idea of the "momentum", i.e. the "impulse" of a moving body. One may imagine 
that this step was made easier by the growing familiarity with spinning tops, gyroscopes, train 
wheels and engines offering a three-dimensional, dynamical representation of the force of rotation. 
Like Poinsot had done, Hayward gave particular prominence to the conservation of linear and 
angular momentum and underscored the continuity between the two notions by speaking of a 
"conservation of momentum" which could be applied both to the linear and the angular one, 
corresponding respectively to the "conservation of motion of the centre of gravity" and to the 
"principle of the conservation of areas".77 Hayward remarked that some elements of his theory 
could be expressed in terms of Hamilton’s quanternions.78 
 
10. James Clerk Maxwell's spinning tops (1855-56) 
 
Hayward's new formulation of the rotation of extended bodies was immediately noticed by a key 
figure of 19th century science:  James Clerk Maxwell.79 Maxwell had started his studies in his 
native Scotland, at the University of Edinburgh, and had  continued them in Cambridge. In 1849 he 
had witnessed the experiments performed in Edinburgh by James David Forbes with spinning tops 
carrying discs painted in sectors of different colours with the aim of studying the composition of 
colours, and in 1854-55 he took up the same line of research.80 In 1856, possibly after having 
experimented with the gyroscope, he published a short note "On an instrument to illustrate Poinsot's 
theory of rotation", where the instrument in question was none other than a spinning top carrying 
colored discs: "On the upper part of the axis [of the spinning top] is placed a disc of card, on which 
are drawn four concentric rings. Each ring is divided into four quadrants, which are coloured red, 
yellow, green, and blue. The spaces between the rings are white. When the top is in motion, it is 
easy to see in which quadrant the instantaneous axis is at any moment and the distance between it 
and the axis of the instrument."81 Thus, Maxwell had interpreted a rotating instrument he was 
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familliar with as a representation of a geometrical-analytical theory of rotation, like the pendulum 
or the gyroscope. 
One year later Maxwell published a much longer essay "On a dynamical top, for exhibiting the 
phenomena of the motion of a system of invariable form about a fixed point, with some suggestions 
as to the Earth's motion."82 This time, the reference to instruments demonstrating rotational 
phenomena was very prominent: Maxwell started his paper stating that "To those who study the 
progress of science, the common spinning top is a symbol of the labours and the perplexities of men 
who had successfully threaded the mazes of planetary motions." and then went on to praise a series 
machines which had been used to visually represent the intricacies of rotation, among them the 
Earth model of Johann Bohnenberger and Foucault's gyroscope.83 Before describing his spinning 
top, Maxwell expounded briefly the theory of rotation following the method of Poinsot, which he 
praised as "the only one which can lead to a true knowledge of the subject".84 He then 
acknowledged the "important contribution" made by Hayward, giving the full reference of his 
paper, and then choosing as the centre of his treatment  Hayward's notion of "angular momentum" 
and of its conservation "in direction and magnitude".85 In his study of Maxwell's natural philosophy, 
Peter M. Harman remarks that Maxwell's appreciation of Poinsot's geometrical approach and of the 
notion of angular momentum can be understood  in the context of the "Newtonian" tradition of a 
geometrical interpretation of calculus and of a mechanics based on the notion of "force" with which 
Maxwell had come into contact during his study in Edinburgh and Cambridge.86 Maxwell made use 
of the notion of angular momentum and its conservation also in the essay on the stability of Saturn's 
rings written for the Adams prize of the University of Cambridge in 1857.87 For our subjet it is 
important to remark that also in this case Maxwell built a mechanical instrument whose motion 
represented the dynamics he was discussing in analytical form.88 As Harman noted  "the 
abstractions of Cambridge mathematics were rendered visual, and transformed into Scottish 
physical realism."89 I would like to underscore the fact that the contribution of mechanical models 
(spinning top, pendulum, gyroscope, Saturn's rings)  were by no means a by-product of the 
knowledge-building process and instead contributed to shape it in an essential way. As we have 
seen, such devices did not just "visualize" theories, but rather represented a step along a complex 
path of physical-mathematical abstraction: they were conceived on the basis of refined analytical 
notions (e.g. Euler's equations) and complemented them by offering a representation of rotations 
which could  be seen as fitting not only Poinsot's geometrical model, but also his natural 
philosophical interpretation of the dynamics of bodies based on a extension of the "Newtonian" 
notion of force. As to the "Scottish physical realism", it is intereseting to note that, in his essay on 
the rings of Saturn, Maxwell put the conservation of angular momentum on the same footing as the 
conservation of energy, and the same was done more or less at the same time by two other Scottish 
natural philosophers who most contributed to creating the  "science of energy": William Thomson 
and William John Macquorn Rankine.90  
 
11. William J. M. Rankine: angular momentum and applied mechanics (1858) 
 
William John Macquorn Rankine had studied at the University of Edinburgh, but had left without 
taking a degree and had subsequently worked as an engineer, at first mostly in railway and train 
construction.91 He had devoted much attention to rotations and in particular to the stress to which 
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rotating elements such as railroad axles were subjected. Later on, he published extensively both on 
engineering and on the theory of matter and heat. Around 1850 he developed a theory of matter, 
heat and light based on the notion of "molecular vortices".92 In these essays, no notion similar to 
angular momentum played an important role, but, as we shall see, they later became the basis for 
some reflections by William Thomson which are of relevance for the present subject. 
In 1858 Rankine published a very influential "Manual of applied mechanics" in which he used both 
the name and the  notion of angular momentum.93 The book contained both well established results 
and  recent innovation in the field and treated extensively all aspects of material stress and stability. 
The author set much worth in connecting theory and practice, and therefore at the beginning 
expounded the general principles that should be applied to the individual cases. Rankine introduced 
angular momentum when discussing systems of interacting bodies.  He explained how to compute 
the absolute value of the quantity and then stated: 

Angular momenta are compounded and resolved like forces, each angular momentum 
being represented by a line whose length is proportional to the magnitude of the angular 
momentum and whose direction is perpendicular to the plane of the motion of the body 
and of the fixed point and such, that when the motion of the body is viewed form the 
extremity of the line, the radius vector of the body seems to have a right-handed 
rotation.94  

This definition took care of all possible ambiguities. Rankine demonstrated the conservation of 
angular momentum for a system of mass points and stated that this law was sometimes called the 
"pinciple of the conservation of areas".95 In the first edition of the manual, Rankine referred to the 
work on rotation by Poinsot and Maxwell, but he did not mention Hayward.96 In later editions of the 
work, however, he acknowledged that "The term angular momentum was introduced by Mr. 
Hayward".97 
Later on, he discussed the motion of rigid bodies and right at the beginning stated that the variations 
of linear momentum were due to the resultant external force, while those of angular momentum 
were the effect of the resultant couple.98 After having defined angular momentum for a solid body, 
Rankine stated that also in this case the conservation law was valid and took this principle together 
with the conservation of energy as a starting point for his discussion of the motion of a free rotating 
body.99 
 
 
12. William Thomson's "momentum of momenta" and the magnetic properties 
of matter (1857) 
 
We now turn to a third representative of the "Scottish physical realism": William Thomson (from 
1897 Lord Kelvin). Thomson had learned about Poinsot's theory of couples already in 1839, when 
he was only fifteen years old, studying at Glasgow college. His teacher John Pringle Nichols, who 
also introduced him to the work of Jean Baptiste Joseph Fourier on heat transmission, had "recently 
got hold of a new book – a pamphlet of some eighty pages – on Couples, and made his students 
write Christmas essays on the Theory of Couples".100 The pamphlet was either the English 
translation of Poinsot's book or the French original. In 1840 Thomson  bought himself also a copy 
of another memoire by Poinsot which dealt with the equilibrium conditions.101 In 1845, when he 
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was at the University  of Cambridge, Thomson spent some time both experimenting with rotating 
bodies and reflecting on the mathematics of rotation.102 In the following years he did not study the 
subject further, but in the 1850's he took an interest in the theory of "molecular vortices" which, as 
already mentioned, Rankine had developed to explain heat phenomena.103 While Rankine had made 
no use of the notion of angular momentum, in Thomson's theory it played a key role to bridge the 
gap between mechanics and electromagnetism.  
Rankine had proposed a quite detailed mathematical theory of matter according to which the 
elements of matter had a more or less spherical form and were constituted by a nucleus and a fluid 
atmosphere. The fluid in the atmosphere moved in vortices having their axes of rotation directed 
along the radii of the sphere. It is not necessary for us to go into the details of Rankine's model, but 
only to note that in 1857 Thomson took it as a starting point to offer a "Dynamical illustration of the 
magnetic and the helicoidal rotatory effect of transparent bodies on polarized light".104 In his paper 
Thomson offered a mechanical explanation of the effect of magnetism on the transmission of 
polarized light through a transparent medium. Thomson proposed to consider the velocitiy of 
transmission of light as resulting from the composition of the velocity of the light wave with that of 
rotational motions internal to the body, such as Rankine's molcular vortices. Thomson recalled that 
Ampère had already linked magnetism to microscopical circulating electrical currents and stated: 

Hence it appears that Faraday's optical discovery [i.e. the effect of magnetism on light ] 
affords a demonstration of the reality of Ampère’s explanation of the ultimate nature of 
magnetism; and gives a definition of magnetization in the dynamic theory of heat. The 
introduction of the principle of moments of momenta ("the conservation of areas") into 
the mechanical treatment of Mr. Rankine's hypothesis of "molecular vortices," appears 
to indicate a line perpendicular to the plane of the resultant rotatory momentum ("the 
invariable plane") of the thermal motions as the magnetic axis of a magnetized body, 
and suggests the resultant moment of momenta of these motions as the definite measure 
of the "magnetic moment".105 

As we see, Thomson here made use of the notion of angular momentum ("moment of momenta") 
and of its conservation, for which he quoted in brackets the traditional analytical names, probably 
for the benefit of some readers. He proposed to identify the “moment of momenta” of the vortical 
motions with magnetic moment: an idea which survived not only his model, but also classical 
mechanics and electromagnetism, to be taken over into quantum theory. Thomson offered no 
mathematical details of how the theory should look like, in contrast to Rankine, who had developed 
a very detailed hydrodynamical model for the vortices. On the contrary, Thomson professed himself 
completely agnostic as to the exact mechanism of matter: 

The explanation of all phenomena of electromagnetic attraction and repulsion, and of 
electromagnetic induction, is to be looked for simply in the inertia and pressure of the 
matter of which the motions constitute heat. Whether this matter is or is not electricity, 
whether it is a continuous fluid interpermeating the space between molecular nuclei, or 
is itself molecularly grouped; or whether all matter is continuous, and molecular 
heterogeneousness consists in finite vortical ot other relative motions of contiguous 
parts of a body, it is impossible to decide, and perhaps in vain to speculate, in the 
present state of science.106 

The notion of moment of momentum was particularly fitting to Thomson’s attitude: on the one side 
it was a rigorously defined mathematical-mechanical notion, while on the other it did not require 
detailed speculations on the mechanical structure of matter.107 The connection to the magnetic 
moment appear plausible because that quantity, too, was usually represented by means of an 
oriented segment and, since angular momentum was known to be conserved, the link could be 
regarded as valid independently of the continuous movements going on inside matter. Thomson's 
theory later provided a starting point for Maxwell's electromagnetism and, although the hypothesis 
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of molecular vortices would eventually be discarded, the connection between magnetic moment and 
angular momentum remained.108 Thus, Thomson had taken up the idea that behind the conservation 
of moment of momenta lay a physical quantity of particular relevance and had connected it with a 
phenomenon of non-mechanical nature: magnetic moment. 
In the 1860s Thomson teamed up with another Scottish natural philosopher, Peter Guthrie Tait, to 
write a "Treatise on natural philosophy" which should offer an overview of that discipline in which 
mathematics would closely fit physics.109 Most prominent among their principles of natural 
philosophy was the conservation of energy, but Thomson and Tait also made large use of simple 
machines such as the screw to express the contents of their subject, and supported the geometrical-
physical formalisation of mechanics which underscored the significance of vectorial notions like 
"momentum" and "momentum of momentum".110 Because of Thomson’s oppositions, the book 
made no use of Hamilton’s quaternions, even though Tait was “an ardent disciple of Hamilton”, as 
Maxwell put it, regretting that the manual did not employ that new analytical tool.111 Once again, 
we see how the choice of mathematical forms was closely linked to personal images of scientific 
knowledge: Thomson saw quaternions and vector algebra as a hindrance to physical understanding, 
rather than as a formalisation which gave prominence to physical meaning, as modern physicists 
regard it. Following Rankine's example Thomson and Tait stressed the analogy between linear and 
angular momentum, stating their conservation laws and adding at the end that the conservation of 
momentum of momentum "is sometimes called Conservation of areas, a very misleading 
designation"112  
 
13. Angular momentum at the crossroad between geometry, natural philosophy 
and engineering 
 
In the previous sections I have endeavoured to show how the notion of angular momentum emerged 
from the convergence of a number of factors: the development of the mechanical analysis of 
rotational motion by French mathematicians; the reinterpretation and expansion of these results in 
new physical-geometrical terms; some specific natural philosophical ideas of motion and its causes 
and, finally, the construction, use and discussion of various mechanical   instruments representing 
the properties of rotational motion. Some crucial steps in this process were taken in Britain, where 
both geometrical formalism and mechanical models were more present in the academical milieu 
than in other European countries and enjoyed a higher epistemological status. In the context of 
Victorian natural philosophy the notion of  angular momentum could emerge and thrive because it 
was supported by different but complementary representations of nature and its regularities. 
The example of Thomson's theory of magnetism and molecular vortices has shown how angular 
momentum, being linked not only to a specific mathematical formalism, but also to a physical 
picture, could provide a means of exporting analytical mechanical ideas and methods into other 
areas of science, as was also the case  in Maxwell's mathematisation of electromagnetic theory.113 
During the second half of the 19th century rotating machines of various kinds were  used by British 
scientists not  only to demonstrate theoretical models of natural phenomena (atomic structure, heat 
theory, electromagnetism), but also to translate them into a new formalism which eventually 
allowed to develop them further, as in the case of  Tait's "smoke ring" demonstration of Hermann 
Helmholtz's theory of hydrodynamic vortices or Thomson’s frequent use of gyrostats to model 
electromagnetic theories .114  
Outside of Britain, however, the notion of angular momentum did not have much fortune. In France 
                                                 
108 Harman 1998, p. 109-112, 115-124. 
109 Thomson and Tait 1867. On the book see: Smith and Wise 1989, p. 348-395. 
110 Thomson and Tait 1867, p. 173-187; Smith and Wise 1989, p. 365-372. 
111 Smith and Wise 1989, p. 365-366. 
112 Thomson and Tait 1867, p. 187. 
113 Harman 1998, p. 98-112. 
114 Broelmann 2002, p. 77-80; Silliman 1963, especially p. 46; Smith and Wise 1989, p. 438-439, 473-475, 485-488. 
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Jean Marie Constant Duhamel devoted much space in his textbook of mechanics to the theory of 
couples, but only mentioned as an aside the fact that the moment of the quantitiy of motion was 
conserved in absence of external forces and moments of forces, and presented this result as an 
"application of the principle of areas".115 In Germany Hermann von Helmholtz formulated a refined 
theory of vortex motion in matter, in which however  the notion of angular momentum did not 
appear, although Helmholtz made use of Poinsot's formalism to compose rotation with the 
parallelogram rule.116 Ernst Mach, in his treatise on "Die Mechanik in ihrer Entwicklung" (1883), 
explained the law of "conservation of areas" without mentioning angular momentum and only 
added at the end of the discussion that this was "a generalization of the principle of inertia”.117  
 
14. The "Theory of the spinning top" by Felix Klein and Arnold Sommerfeld 
(1897-1903) 
 
The first German text in which angular momentum was presented as a physical quantity of 
relevance was the treatise "Über die Theorie des Kreisels" (1897-1910) written by Felix Klein  
together with Arnold Sommerfeld.118 The book was due to the initiative of Klein, who had been 
pursueing the aim of reintroducing geometrical methods into mathematics, and it was an innovative 
attempt to combine the analytical and the geometrical approach to the study of rotation. It is no 
chance that the text put at its centre a mechanical device, the spinning top, as representation of 
rotational motion, since the authors repeatedly quoted and praised Thomson and Tait, and followed 
them in making use of a "Newtonian" concept of force.119 They also acknowledged their debt to 
Poinsot, whose "beautiful methods" ("schöne Methoden") they cultivated in their treatise, and 
giving particular importance to a notion of impulse: 

Noch wichtiger für uns aber ist die volle Klarheit über die mechanischen Ursachen der 
Bewegung , über die ins Spiel kommenden Kräfte. Wir werden uns diese möglichst 
konkret im Raume als Vektoren versinnlichen; besonders Wert legen wir auf die 
Ausbildung und konsequente Benutzung des Impulsbegriffs, worunter wir diejenige 
Stosskraft verstehen, welche imstande ist, die jeweilige Bewegung momentan von der 
Ruhe aus zu erzeugen.120 

While one might be tempted to equate the "impulse" with linear momentum, this was only true for 
point masses: in the case of solid bodies, the impulse was divided into a translational and a 
rotational part, which Klein and Sommerfeld in the first volume of the work (1897) referred to as 
"Schiebeimpuls" and "Schraubeimpuls", while in later volumes the term "Drehmoment" was 
introduced.121 The authors made clear that their notion of rotational impulse was precisely the one 
introduced by Poinsot: "Der Begriff des Impulses des Kreisels ist von Poinsot in den mehrfach 
zitierten Arbeiten vollständig entwickelt worden. Die Bezeichnung Poinsot's lautet etwas 
umständlich couple d'impulsion."122 I would like to suggest that this emphasis on angular 
momentum as a quantity as physically foundamental as linear momentum may have played a role a 
few years later, when Sommerfeld tackled the problem of the quantization of atomic motion. In the 
last part of this paper I shall briefly discuss how the notion of angular momentum was used as a 
means to bridge the gap between classical and quantum physics. 
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15. Angular momentum and the quantum: Niels Bohr's atomic model (1913) 
 
In a series of studies published in 1913 Niels Bohr proposed his highly innovative atomic theory.123 
Starting point for his reflections was Ernest Rutherford's model of the atom as a microscopic Solar 
system with an electron orbiting around a positively charge nucleus. This motion, when treated 
according to classical mechanics and electromagnetism, was known to give rise to unstable 
configurations in which the atom would steadily lose energy through radiation and eventually 
collapse. Bohr's crucial step was to assume the existence of "stationary states" in which atoms did 
not radiate and therefore maintained a constant value of the energy. Bohr computed the stationary 
energy values by first making use of classical formulas and then imposing on the result an 
additional condition involving Planck's constant h and an integer number τ (“quantum number”). 
The condition was such, that agreement with observed data could be obtained and, for the hydrogen 
atom, the energy W was bound to have the form: 
W(τ)  = (2π2 m e4)/(h2 τ2). 124 
Here m and e were respectively the mass and charge of the electron. Radiation took place in 
separate emissions or absorptions associated to the transition of the atom from one stationary state 
to another. Bohr could not offer any formal description of these "jumps" other than the frequency 
condition Winitial-Wfinal= hν, where ν was the frequency of the emitted light.125 
Bohr's theory could predict the values of the spectral lines of hydrogen and also qualitatively 
explain the discrete structure of atomic and molecular spectra. Yet he recognized that his model, 
while successful from the phenomenological point of view, hardly provided a physical explanation 
for atomic structure, and offered a tentative interpretation of his results in terms of what he called 
"symbols taken from ordinary mechanics".126 He pointed out that the quantization condition for the 
energy took a very simple form when expressed in terms of  angular momentum: "If we therefore 
assume that the orbit of the electron in the stationary states is circular, the result of the calculation 
on p. 5 [i.e. the formula for W] can be expressed by the simple condition: that the angular 
momentum of the electron round the nucleus in a stationary state of the system is equal to an entire 
multiple of a universal value, independent of the charge on the nucleus."127 
So Bohr obtained for the  angular momentum M the condition: M= τ h/(2π), where τ was again an 
integer quantum number. This expression had the same form of the various quantization conditions 
that, following the success of Max Planck's black body radiation formula, had been employed in 
various fields of physics.128 Bohr's condition corresponded to quantizing the absolute value of 
angular momentum and his specification that one should assume circular orbits  indicates that he 
was not making any effort to give a detailed physical interpretation of his model: the “self-evident” 
connection between the physical notion of angular momentum and quantum physics was all but 
evident to him. 
 
16. Arnold Sommerfeld's atomic angular momentum and its connection to 
magnetic moment (1915-1919) 
 
While Bohr had regarded the analogy between classical angular momentum and the quantity 
involved in his atomic model as purely symbolical, Arnold Sommerfeld took the opposite stance. In 
a series of papers published from 1915 onward he expanded and refined Bohr's theory in such a way 
as to accomodate three integer quantum numbers instead of only one, and was able to at least partly 
make sense of the fine structure of atomic spectra as well as of the characteristic of the radiation 
                                                 
123 For the present study, it sufficec to discuss the contents of Bohr's first article Bohr 1913. For a discussion of the early 
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emitted and absorbed under the influence of magnetic or electric fields.129 What is of particular 
interest for us is that Sommerfeld achieved his results not purely on the basis of analytic prowess, 
but also by following a physical picture of stationary states in which the "mechanical" notion of 
angular momentum served as a means to bridge the gap between classical and quantum theory. 
Like Bohr, Sommerfeld considered the atom as a Keplerian system in which a small electron 
orbited around a large nucleus, but other than Bohr he deployed the whole apparatus of analytical 
mechanics to consider the motion of the system, expressing it in terms of the canonical conjugate 
variables (q, p).130 The position q was expressed at first in polar coordinates (r, θ), later in spherical 
ones (r, θ, ψ), and in both cases the generalized momenta p corresponded to angular momentum. In 
the first case Sommerfeld only took into account the two degrees of freedom of the electron on the 
plane of the (elliptical) orbit, whose dimensions and eccentricity could vary, and so the angular 
momentum p was constrained to be in the direction perpendicular to the orbit and only had a single 
degree of freedom. Thus, even when allowing elliptical orbits, imposing quantization conditions on 
this classical constellation amounted to quantize only the absolute value of angular momentum, like 
Bohr had done and, unsurprisingly, Sommerfeld in the end obtained exactly the same result as Bohr 
had reached. To go beyond, he decided to quantize all three degrees of freedom of p, which 
amounted to quantizing not only the dimensions and eccentricity of the orbit, but also its orientation 
in 3-dimensional space - a "space quantization" ("Raumquantisierung"), as it would be called 
later.131 This step proved essential for taking into account relativistic effects and so finally going 
beyond Bohr's model and explaining how fine structure of hydrogen and the multiplet structure of 
complex spectra depended on two quantum numbers.132 
Despite the phenomenological success of his model, Sommerfeld felt that space quantisation 
required some physical justification, since it implied an arbitrary choice of a preferred direction in 
space - the z-axis of spherical coordinates - to be used when imposing physically relevant 
quantization conditions. Therefore, he introduced the procedure with these remarks: 

Es entsteht die Frage, ob sich auch die Lage der Bahn "quanteln" läßt. Dazu muß 
allerdings wenigstens eine Bezugsebene im Raum ausgezeichnet sein, sei es durch ein 
äußeres elektrisches oder magnetisches Feld oder durch die Konstitution des Kernes 
selbst, z.B. einen diesen umgebenden Elektronenring. Bei den kräftefreien 
Wasserstoffkern dagegen ist die Lage der Bahnebene aus Mangel an allen 
Bezugsstücken physikalisch unbestimmt und daher auch nicht quantentheoretisch 
bestimmbar. Wenn wir trotzdem eine Quantenbedingung für die räumliche Lage der 
Bahn am Wasserstoffmodell entwickeln werden, so ist dies folgendermassen gemeint: 
Wir denken uns durch einen (äußere oder innere) physikalische Ursache eine Richtung 
im Raum ausgezeichnet, lassen aber die Stärke derselben zu Null abnehmen, so daß wir 
wieder genau diese Ursache quantitativen Verhältnisse haben wie bei der Bewegung im 
Felde des reinen Wasserstoffkernes, aber mit der Möglichkeit der Orientierung gegen 
eine Vorzugsrichtung (oder Vorzugsebene). Diese Richtung können wir dann zur Achse, 
diese Ebene zur Äquatorebene eines räumlichen Polarkoordinatensystems r, θ, ψ 
wählen.133  

Thus, Sommerfeld justified his apparently arbitrary choice of reference frame by imagining  that a 
"physical cause" like a magnetic or electric field, if present, would constrain the motion of the 
system. He then let the intensity of the imaginary field go to zero, to obtain a preferred direction in 
space despite the rotational symmetry of the system. Apart from the obvious methodological 
problems inherent in this kind of "symmetry breaking", what is interesting for us is that here 
Sommerfeld was assuming that the "quantistic" angular momentum would be affected by electric 
and magnetic fields like its classical counterpart. In other words, he was implying that the  
mathematical formulas which were called "angular momentum" in his quantum theory stood in a 
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physical relation, and not just in purely symbolic analogy, to the classical quantity: like classical 
angular momentum, also the quantistic one determined the behaviour of the atom in an 
electromagnetic field. Without any support from experiments - which on the contrary suggested that 
classical theory did not apply to atoms - Sommerfeld was here postulating the validity of the same 
connection between rotation and magnetisation which had been proposed decades earlier by 
William Thomson. On the basis of this assumption he interpreted the quantum numbers linked to 
space quantization as establishing the number of possible orientations which "angular momentum" 
could take with respect to an external magnetic or electric field. For a quantum number n=1 two 
orientations were possible, for n=2  five, and so on.134 
In his paper Sommerfeld did not commit himself explicity on whether atomic angular momenta 
could be considered equivalent to macroscopic ones, but in his textbook "Atombau und 
Spektrallinien" (1919) he clearly stated his opinion that, like energy, also linear and angular 
momenta, i.e. "Impuls" and "Impulsmoment" were to be understood as physical quantities whose 
properties could be expressed both in classical and in quantum terms. In 1918 Wojciech (Adalbert) 
Rubinowicz, who had formerly been an assistant to Sommerfeld in Munich, had postulated the 
conservation of “angular momentum” during the interaction between atoms and radiations and had 
used it to explain some selection rules of atomic spectra.135 In his textbook Sommerfeld 
summarized and expanded this idea, giving his full support to Rubinowicz's results: "Wenn bei der 
Konfigurationsänderung des Atoms sich sein Impuls oder Impulsmoment ändert, so sollen sich 
diese völlig und ungeschwächt wiederfinden in dem Impuls und dem Impulsmomente der 
Strahlung."136  
To appreciate the radicality of this statement one has to keep in mind that, at that time, no 
mathematical formalism for quantum theory existed in whose context the conservation could be 
formulated, let alone proven. Moreover, in 1918 Bohr had proposed an explanation of selection 
rules which did not require any physical interpretation of  quantum numbers and was in better 
agreement with experiment than Rubinowicz's proposal. Bohr explicitely cast doubts on the 
conservation of angular momentum for quantum systems. However, Sommerfeld's physical 
interpretation of atomic angular momentum was vindicated against Bohr's skepticism by the 
experiment performed in 1921-22 by Otto Stern and Walther Gerlach. 
 
17. The experiment of Otto Stern and Walther Gerlach: the operationalisation of 
quantum angular momentum (1921-22) 
 
In the summer of 1921 Otto Stern wrote a paper proposing "a method to test experimentally the 
quantization of direction in a magnetic field"137 Stern took Sommerfeld's idea on atomic angular 
momentum and its connection to magnetic moment at face value and suggested how they could be 
put to the test: 

In der Quantentheorie des Magnetismus und des Zeemaneffekts wird angenommen, daß 
der Vektor des Impulsmomentes eines Atoms nur ganz bestimmte diskrete Winkel mit 
der Richtung der magnetischen Feldstärke H bilden kann, derart, daß die Komponente 
des Impulsmomentes in Richtung von H ein ganzzahliges Vielfaches von h/2π ist. 
Bringen wir also ein Gas aus Atomen, bei denen das gesamte Impulsmoment pro Atom - 
die vektorielle Summe der Impulsmomente sämtlicher Elektronen des Atoms - den 
Betrag h/2π hat, in ein Magnetfeld, so sind nach dieser Theorie für jedes Atom nur zwei 
diskrete Lagen möglich, da die Komponente des Impulsmomentes in Richtung von H 
nur die beiden Werte  ± h/2π annehmen kann.138 

On the basis of Sommerfeld’s theory Stern treated the quantized angular momentum as a vector 
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quantity J which really existed in space and had a given length, but an as yet undertermined 
orientation. He further assumed that this vector J was associated to a magnetic moment M = 1/2 e/m 
J, just like in the classical case.139 When a beam of  atoms passed through a magnetic field, their 
angular momentum was  forced to orient itself with respect to the direction of the field in one of the 
two positions which were allowed by the quantum theory, and this would lead to a splitting of the 
beam into two parts. In the classical case, instead, the beam would simply spread in a continuous 
way and so it would be in principle possible to distinguish the two cases. A short time later, helped 
by Walther Gerlach, Stern performed the experiment with a beam of silver atoms which they 
assumed to correspond to the case n=1 and therefore to fulfil the conditions described by Stern in 
his theoretical paper.140 The beam of atoms split into two parts  and thus the authors could announce 
"that the quantisation of direction [of angular momentum] had proved to be a fact" ("Die 
Richtungsquantelung im Magnetfeld [wurde] als Tatsache erwiesen").141 
The result was received with some astonishment by the scientific community, as few had actually 
regarded space quantization as more than a formal device, yet the discrete splitting of the beam 
offered an impressive evidence of the failure of classical theory and implicitly supported the belief 
that  the quantum formalism for angular momentum indeed represented a physical quantity which 
was, if not identical, at least very similar to the classical notion bearing the same name. As in the 
case of Foucault's pendulum, two different representation of what was assumed to be a law of 
nature had been put near each other, and a new physical notion had emerged from that tension: 
quantum angular momentum. The fact that atomic angular momentum could be linked to magnetic 
moment - and vice versa - proved to be of the utmost importance for the later development of 
quantum theory, because it provided a means to operationalize and investigate the otherwise very 
abstract notion of atomic angular momentum: studying the behaviour of atoms in magnetic fields 
(Zeeman, Paschen-Bach effect). Eventually, this led to the emergence of the concept of spin and to 
the relativistic and quantum-field-theoretical generalisation of angular momentum. 
 
18. Conclusions 
 
Combining the mathematical analysis of motion with the geometrical representation of mechanical 
entities and with a Newtonian notion of "force", Louis Poinsot developed the physical-mathematical 
concept of a "conserved moment" which he used to further explore the dynamics of rotation. 
Around 1850 this idea proved capable of bridging the gap between analytical mechanics and the 
mechanical devices representing the properties of rotational motion (Foucault's pendulum, the 
gyroscope). In the context of the British and especially Scottish natural philosophy of the Victorian 
era, where geometrical reasoning and mechanical models had come to be regarded as having a 
particularly high epistemological value, Robert B. Hayward formulated the modern definition of 
"angular momentum”, which was promptly taken up by James C. Maxwell and William J. M. 
Rankine and employed by William Thomson to establish a connection between the structure of 
matter and its electromagnetic properties. Later on, guided by the classical notion of angular 
momentum, Arnold Sommerfeld constructed its equivalent in quantum theory, and Otto Stern and 
Walther Gerlach established an operational definition for it which not only survived the old 
quantum theory, but eventually became central to quantum mechanics and quantum field theory.  
I believe this picture offers an example of how physical-mathematical notions emerge and are 
constantly supported by the interactions and unresolved tensions between different representations 
of phenomena, of mathematical structures and of philosophical ideas in words, symbols, graphics, 
mechanical contrievances or by any other means. Thanks to this multiplicity, the actors making use 
of the notions can often find one aspect of the composite which fits the present needs, bridging the 
gap between different phenomena to be intrepreted, or different conceptualization of natural laws to 
be connected with each other. 
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