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1. Introduction

Angular momentum is one of the fundamental notiohsnodern physics. It can be defined in
classical mechanics, electromagnetism, quantum améchand quantum field theory and, although
the mathematical expressions and observable pher@hmied to it are in each case different, the
conservation of angular momentum is regarded adifgpfor any system which is invariant under
rotation. It is not my intention to discuss here thifferences between the various notions of amgula
momentum, but rather to underscore how, despiteetidferences, that concept today maintains a
strong identity as the "same" physical quantityqgUiote a view from the scientific community:

"The concept of angular momentum, defined ingia$ the moment of momentum (L

= r X p), originated very early in classical medcan(Kepler's second law, in fact,

contains precisely this concept.) Nevertheless,ulangmomentum had, for the

development of classical mechanics, nothing liked@ntral role this concept enjoyes in

quantum physics. Wignemnotes, for example that most books on mechanidsewr

around the turn of the century (and even laterndomention the general theorem of

the conservation of angular momentum. In fact, @ajovell-known "History of

L Wigner 1967, p. 14.



physics? (1929 edition) gives exactly half a line to angut@omentum conservation.

That the concept of angular momentum may be oftgreanportance in quantum

mechanics is almost self-evident. The Planck quanai action has precisely the

dimensions of an angular momentum, and, moreokerBbhr quantisation hypothesis

specified the unit of (orbital) angular momentumbe h/2r. Angular momentum and

quantum physics are thus clearly linkéd.*
In this passage angular momentum is presentedpohgsical entity with a classical and a quantum
incarnation. This situation is not peculiar to thaition, and there are a number of classical
mechanical concepts which have been taken ovelqudotum theory without losing connection to
their classical selves. | believe this to be a vienportant aspect of the relationship between
mathematics and physics and in particular of thmaptex nature of physical-mathematical notions.
Historically, such concepts do not appear becaugkyaical content meets a mathematical form,
but rather emerge from a coevolution of mathema#ing physics making evident both the
multiplicity within each discipline and the closerrelation - at times even indistinguishability -
between specific aspects of physical and matheaigiractice, as well as of the philosophical and
technological contexts in which they are embeddeds because of this complex, composite
character that physical-mathematical notions capdreeived by scientists as possessing a specific
identity behind the many representation they caermmuntered in - from Kepler’s area law to the
guantum numbers of the Bohr-Sommerfeld atom. Infédlewing pages, | shall tentatively explore
this constellation by sketching the emergence agsital angular momentum and its translation into
guantum-theoretical terms.

2. Johannes Kepler's area law and Isaac Newton's palelogram of forces

Other than linear motion, rotations have attractbd attention of mathematically-minded
philosophers since Antiquity. Although this wasgily due to the evident regularities and
outstanding cultural significance of heavenly moti@ne must not forget that the stability of
rotating bodies could also be inferred from eveyydaperience and was at the basis of simple
tools such as the potter's wheel or the spinnipgwinose use is attested well before the emergence
of geometrical or numerical representations of stele motion? The practice of discus-throwing
presupposed a highly refined understanding of tiation of rigid bodies and flywheels were
employed already in Antiquitiy to stabilize the oot of machines of various kirfdThus, it is not
suprising that in pre-modern natural philosophgyatems, especially but not only the Aristotelian
one, circular motion had a special status as aféprmovement which partained to celestial
entities® The geometrical models of celestial motion bagedizles were the starting point for the
development of modern mechanics and Newtonian t@gtéu - a development which ironically led
to the rejection of the idea of the perfection aftion in favour of a higher consideration of hne
movement. While Nicholaus Copernicus had still addeto the notion that celestial movements
had a circular form, Johannes Kepler expressed thgmeans of ellips€sin his model, the
stability of the Ptolemaic spherical cosmos foundheav expression in the statement that the
elliptical orbits of the planets were fixed both shape and space orientation. Moreover, the
movement of celestial bodies along their path washsthat the areas spanned by the line
connecting a planet to the Sun were proportionathto time elapsed, despite the fact that the
distance between the two bodies and the velocith@blanet constantly changed. As we shall see,
the habit of expressing the constancy of rotationation in terms of areas will remain alive until
the 19th century, so that what is today referredsdhe conservation of angular momentum at that

2 Cajori 1929.

% Biedenharn, Louck and Carruthers 1981, p. 1.

* Hurschmann 1999; Scheibler 1999.

® Decker 1997; Krafft 1999, esp. col. 1087.

® Daxelmiiller 1999.

"Dugas 1988, p. 110-119, Kepler 1628, p. 410-412.



time took the form of a principle of conservatidraceas.

Before proceeding in our exploration of the methedsployed in the early modern period to
formalize and analyse rotations, we have to makelear distinction between the graphic
representation of mechanical and dynamical queetitiheir analytical expressions and the abstract
mathematical structure which are associated wigmthoday The angular momentum of a
classical mechanical system is mathematically sspried today by an axial vector in three-
dimensional space, which can be manipulated acuprth the rules of vector algebra and is
graphically depicted as an oriented segment inespéector algebra was only developed from the
middle of the 19th century onward and played ne mlthe emergence of classical mechanics, but
the representation and manipulations of some palygjoantities (motion, force) by means of
oriented segments was current already in the latitucy.

The composition of forces with the parallelograrfermad been in use since the Renaissance and
was further developed by Isaac Newfofo compose the effect of two forces acting onshme
body, Newton represented them by two segments, wdbHength and direction corresponding to
the motion which the force would impart on the bday acting on it for a given time. The
segments were drawn as the sides of a parallelograose diagonal represented the combined
effect of the two forces. In this procedure forcaswepresented and manipulated geometrically as
the motion it could impart to a body and this wasturn connected to an idea of force which
Newton had taken over from medieval tradition. dtriot here the place to discuss Newton's
complex and at times ambiguous idea of force: sriffio say that, while innovative, it still
embedded the earlier concept of a discrete "impe&thgch, when transmitted to a body, set it into a
motion of direction and extension correspondingg@wn entity"*

Although Newton employed a geometrical represamadf forces and motions, he never used it for
angular momentum, for the very simple reason tasuch notion can be found in his work - not
even where he discussed the problem of the precessithe Earth's axi€. According to the
analysis of Clifford Truesdell, the first authordpeak not only of a "moment of rotational motion”,
but also of its "conservation" ("conservationem neotii motus rotatorii") was Daniel Bernoulli,
who did so in a letter written in February 1748Bernoulli had discussed the motion of a ball
sliding within a rotating tube, demonstrating thetat we regard as the absolute value of the
angular mometnum of the whole system could nothaaged by the mutual interaction of its parts.
By referring to these results as a conservatiofmmment of rotational motion”, he was using an
expression, the “moment” of a force, which had béeweloped in the context of the theory of the
lever. The effect of a force of intensity | acting a lever is proportional both to | and to the
distance L of its point of application from thedmim. The "moment” of that force acting in that
specific configuration is equal to the product Hdagives a scalar measure of the effect of theeforc
In the late Renaissance this notion was extendeulicate the effect of a force acting not onlyaon
lever, but on a generic body of which a point remedifixed (e.g. a penduluri) Daniel Bernoulli
extended it further, but still regarded the momantotational motion as a scalar quantity and did
not associate any direction to it.

3. Leonard Euler on the rotation of rigid bodies

While Kepler and Newton had mainly dealt with spsseof mass points interacting with each other,
mathematicians of the 18th century took up the w@sknathematizing the motions of extended

8 This is a very complex subject that has been sitely treated in the historical literature (Cajrt 999, 2002;
Crowe 1985) and | will only deal with it as far mscessary for the present investigation.

° Dugas 1988, p. 123-127, 151-153, 207-209.

2 bugas 1988, p. 208-209, Kutschmann 1983, p. 126-12

" Kutschmann 1983, p. 18-19, 120-129.

2 Dobson 1998, especially p. 132-133, 136-138. Trekk4964b, p. 244-245.

13 Truesdell 1964b, p. 254-256, quote from Berndiifi4, p. 549.

1 Truesdell 1964b, p. 248-252.
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bodies on which forces could be applied at the siame at different places. Decisive contributions
to this field were given by Leonard Euler, who was first to write down the general equations of
motion for an extended body.Starting from the recognition that any infinitesil motion of a
body can be decomposed into a translation antbéion, Euler developed in a series of papers the
mathematical analysis of the movement of rigid bedand wrote down the differential equations
governing it. In his writing he offered differederivations of his results, and | shall focus oa th
latest one (1775), which was also the most accamgdl. To express mathematically the state of a
body Euler introduced the three angles which tosldy bear his name, and thanks to which a
parametrisation of any rotational motion is possiBl These new quantities allowed him to
transform a geometrical description given in tewhsxes of rotation and space positions into an
analytical one based on trigopnometric functionasWas a very important step, because it allowed
Euler and later authors to at least partly disthedgeometrical language of rotation in favourhsf t
purely algebrical ("analytical") one. It is not essary for us to follow Euler's derivation and il w
suffice to state the equations as he wrote theh? 1ib:
[dM(ddx/dE) = iP
[dM(ddy/df) = iQ
[dM(ddz/dg) = iR
[zdM(ddy/df) - [ydM(ddz/dt
IxdM(ddz/d F) - JzdM(ddx/d®) = iT
lydM(ddx/df) - [xdM(ddy/df) = iu*’

IS

In these formulas dM represents an infinitesimaksnalement of the body at the position with
Cartesian coordinates (x,y,z); ddX/¢ite. d2x/dt?) etc. are the corresponding accéters; P, Q and

R are the resultant external forces acting in thectons of the three axes x, yand z; S, T arateJ

the resultant “moments” of the external forces jmgaken in the directions x, y and z.

Euler used here the notion of "moment” like DaBeinoulli had done, i.e. in a scalar sense, and so
did not regard S, T, and U as components of desipigysical entity, but rather as three separate
moments computed with respect to the three axdsr'&first three formulas state the relationship
between force, mass and acceleration, while thehase expressions formally correspond to what
we today describe as the relationship betweenviedrial) moment of external force (MMy, M)

and the time derivative of (vectorial) angular mowoen (4, J,, J), whose components are defined
in the same way as in Euler's equatibh§herefore, from a purely analytical point of viemne
may claim that Euler had written down both the espron and the dynamics of the angular
momentum of a solid body. Moreover, the equationglied that, in absence of external moments
of force, the value of the angular momentum wowabnserved.

Howerver, Euler did not consider the equationseérring to the evolution of the three components
of the same quantitiy. Indeed, he did not even séemegard the individual expressions as
particularly significant. In a later paper he diseed the fact that the effects of the moments S, T
and U could indeed be composed in the same wayossesi i.e. using the rule of the
parallelogrant?® Thus, it seems that he was becoming aware tharaitytical expressions could be
somehow translated back into a geometrical formwéi@r, at that time Euler was already very old
and blind and therefore could not further pursug bsearch. The fact that the great mathematician
only became aware at such a late date of this aspéue subject which he had studied for so long
is in my opinion the best evidence that such chaof@erspective are anything but trivial.

15 Blanc 1968; Caparrini 1999; Truesdell 1964a, 19@&bwhich the following discussion is largely base
1% Euler 1775, p. 208-211, i.e. p.103-104.

" Euler 1775, p. 224-225, i.e. 113.

18 Davis 2002, esp. p. 255-256.

19 Caparrini 2002, p. 154-155.



4."Conservation of area" and "invariable plane” in French mathematics (1788-1790)

Euler's equations were later taken up by othercastiembedded in new systems of mechanics and
eventually rederived according to new princiffé# his "Mechanique analytique" (1788) Joseph
Louis Lagrange expressed them in the formalism #tilt carries his name and in which the
"vectorial" character of the equations was lessl@wi than in Euler's original foril.However,
Lagrange noted that the new formalism allowed tdude a number of principles of conservation
which had hitherto been regarded separately: "timservation of living force, the conservation of
the movement of the centre of gravity, the condemaf the moment of rotation or principle of the
areas and the principle of least actiéh'Lagrange went on to explain that the principle of
conservation of moment of rotation (i.e. of ardz) been derived independently by Leonard Euler,
Daniel Bernoulli and Patrick d'’Aréy.We have already seen what Euler and Bernoulliviiaidked

on. According to Lagrange, d'Arcy had formulatespbacial case of this result in terms of areas: "la
somme des produits de la masse de chaque corpaipague son rayon vecteur décrit autour d'un
centre fixe sur un méme plan de projection estotmsj proportionelle au temp&*.Lagrange
regarded d'Arcy's formulation as "généralisatiorbdau théoreme de Newton", which in turn was a
generalisation of Kepler's law of areas, and, whenving the result with his own methods, he
referred to it as "principle of areaS'Thus, by the late 18th century, the notion thiaealy rotating
system was subject to a specific conservation las present, but the law was mainly regarded as
concerning one or more scalar quantities. It wasr@iSimon Laplace who drew attention to the
fact that the principle of areas also implied tbaservation of a preferred direction of the system,
and he expressed this fact geometrically in terfrend'invariable plane” of rotation, which for us
corresponds to the plane perpendicular to angutememtum?®

As Euler had done, Laplace wrote down the exprassiavhat we regard as the three components
of angular momentum and noted that they were cohgtaabsence of external moments of force.
He also remarked, like Lagrange had done, thaketlgesintites could be interpreted in terms of
areas and that one could choose the coordinatensyst such a way that two of the constant
guantities would be zero, while the third one hiagl highest possible value of any of them. It is
easy to interpret this result by conceiving of theee quantities as components of a vector, but
Laplace chose to adhere to the "area" interpretalibis may appear somehow forced to a modern
reader, but for someone like Laplace who had beanking many years on celestial mechanics the
connection between his new result and Kepler'sgdeawbably appeared rather intuitive, while the
notion of associating an oriented segment to satleer abstract analytical expression did not. It
would be incorrect to say that Laplace rejectedngedcal interpretations of his analytical
formulas: he only chose a different one that weattay. As we shall see in the next section, the
first one to propose a geometrical interpretatiomilar to the modern one was the French
mathematician Louis Poinsot.

2 Grattan-Guinness 1990, p. 270-301.

Z Truesdell 1964b, p. 245-246.

2 théoréme connus sous les noms de conservatioioes vives, conservation du mouvement du cefergravité,

de conservation des moments de rotation ou prirdigenires, et de principe de la moindre quansi&idn” Lagrange

1853, p. 257. | quote from a later edition of Lagga's work, which however does not present reledidference to the

first one as far as our subject is concerned.

% Lagrange 1853, p. 259-261.

2 Lagrange 1853, p. 260.

% Lagrange 1853, p. 260, 278-288.

% Laplace, 1799, p. 65-69. Laplace’s work is disedssy Caparrini 2002, p. 156-157; Grattan-Guinfd&g9, p. 317-
318, 360. Grattan-Guinness writes that Laplace imadffect” shown some properties of angular moremt- it is
important to note that Laplace made no use of sotion.



5. Louis Poinsot's statics and the notion of a colgp (1803)

Louis Poinsot had set out to become an enginestr dirthe Ecole Politechnique and then at the
Ecole des Ponts et Chaussés, but he eventually gavkis study to pursue his interest in
mathematics and in 1804 became a teacher of theiptine at the Lycée Bonapafteln 1803 he
published a "Treatise on Statics" which, althouglten for candidates to the Ecole Polytechnique,
was much appreciated by all engineers and als@img $=rench academit&Thanks to that work
and to a series of memoires on rotational motior,d09 he obtained the post of inspector general
at the University and in 1813 was elected to thed®my. He remained active in research and
teaching at the university and the Ecole Poythepheibut was often in opposition to the analytical
school of mathematics because of his geometrigaioagh to mechanics. In the course of the 19th
century his work found increasing appreciation aghémench mathematicians. In 1858 Joseph
Louis Francois Bertrand stated in a discodrse:

Nul oserait [...] aujourd’hui contester l'importaret la hauteur des travaux mécaniques

de Poinsot: il semble évident déja que la postdotéplacer l'illustre auteur de la

'Statique' bien au-dessus des contemporaines,gadicélebre, qui l'ont si longtemps

meéconnu. Poisson disait, au sein méme, je croiBudeau des longitudes: 'si Poinsot

se présentait a I'Ecole polytechnique, ma conseieeame permetterait pas de I'y

admettre®
Poinsot's "Treatise on Statics", which reached2th edition in 1877, almost twenty years after th
death of its author, offered a formulation of cless mechanics relying on geometrical
representations, as advocated by Gaspard MongehofmwPoinsot was a follower. However,
Poinsot not only gave a different presentationltionoaterial, but also used the new form to develop
innovative and heuristically fruitful physical matinatical notions.
At the centre of the book stood the concept of @plm i.e. a system of two equal and opposite
forces acting on two points of the same body. &tfect of a couple could never be reduced to that
of a single force, as it corresponded to a rotatimund an axis perpendicular to the plane of the
two forces™ The intensity of the effect of a couple was meedusy the (scalar) moment of the
couple (i.e. intensity of the forces times theistdnce) and Poinsot proposed to represent that
moment geometrically, by means of an oriented segmerpendicular to the plane of the coufle.
Poinsot showed how, thanks to this representati@neffect of two couples could be composed by
using the rule of the parallelogram, exactly ashi case of forces. Using the notion of a couple
Poinsot showed that the total effect of a systerfoxmes on a body could always be represented as
the combination of a single resultant force andngls resultant couple. We do not need to go
further into his theory, but it is important toests that, despite its geometrical form, it was by n
means "intuitive" in the sense that it appealeddme notions immediately linked to everyday
experience, as in the case of force and linearanoWhile the representation of forces by means of
oriented segments was immediately suggested bymibgon they impressed, no such obvious
interpretation existed for couples and rotationrs we have seen, momenta were usually conceived
as scalar quantities. Like Laplace's "principleamdas” and "invariable plane”, Poinsot's theory was
the translation into geometrical forms of a complalstract notion that had been developed by
analytical means. Neither of the alternative "getrimations"” of the dynamics of rotating bodies
was more immediate and intuitive than the otheeytlvere simply linked to different physical
systems which the authors had in mind, on the aleethe Solar system, on the other the spinning
top. Poinsot's theory proved immediately succesfitth engineers, who were capable of dealing
well with geometrical entities, while Laplace's mad was more appreciated by mathematicians.

270n Poinsot's life and work see: Grattan-Guinn@991p. 190-191, 358-364, 1154-1157, 1233-123@)1T4075.
% poinsot 1803.

29 Bertrand 1858. For the context of the text se®@iT@003, p. 242-244.

31 Poinsot 1803, p. 47.

32 Poinsot 1803, p. 58-59.
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6. Louis Poinsot's dynamics and the "conservation foforces and moments"
(1806)

As befit its subject, the treatise on statics afgwlt with bodies in equilibrium, but already in063
Poinsot started applying his approach to dynanmiitsa memoire presented to the Academy he
summarized his theory of couples, stressing haagometrical representation of the moments of
a couple could be used to represent and maniptlatmoments of any forcé He showed how his
method allowed to reproduce all results presentaplace's mechanics and finally claimed that,
thanks to the new formalism, "hidden forces" hademyad: "Que ces sortes de produits qu'on
appelle momens n'étaient au fond que la mesureedaires forces cachées que les couples ont
mises en évidencé®
The meaning of this statement became somehow cleatbe third part of the essay, where the
theory was applied to dynamitsWhen a body moves freely in space in a straigh, lisaid
Poinsot, the "force" animating it remains constarnhtensity and direction, and the same applies to
to its moment. This "conservation of forces" andngervation of moments" was valid for any
system of bodies interacting only with each otld¢rthis point, the term "force" was used in a
slightly different meaning than in the treatmentstdtics, but Poinsot did not elaborate on this and
offered a purely verbal "raisonnement" to prove ¢beservatiori’ The reasonement was based on
the idea that, in each mutual interaction, the el of the system only exchanged forces and
moments with each other, so that the sum remaioestant:

On voit donc que, dans un system de corps quiemot des impulsions primitives, et

qui réagissant d'une maniére quelconque les umésssautres, la somme de toutes les

forces qui les animent, estimées suivant une méoit dst la somme de leurs momens

par rapport & un méme axe fixe quelconque, demecoastamment mesménigs.
Poinsot stated that this conservation correspotalédo analytical principles: the conservation of
the motion of the centre of gravity and the conaBon of areas. These conserved quantities were
expressions of "powers" ("puissances”) impartedh® bodies and conserved in th&hPoinsot
used a notion of "force" or "power" similar the owe found in Newton and such "Newtonian”
concepts were not uncommon in France: Laplace,ef@mple, used thefi.The novelty of
Poinsot's approach was that he had extended &aditrtent to moments of forces and in doing so he
had revealed new, "hidden forces", i.e. physicdities analogous to impulse but linked to
rotational motion and capable of being represerigda directed segment. In this way, the
conservation of area became the conservation efrapiysical mathematical quantity. Poinsot did
not regard analytical expressions as defining tentty, but only as giving its measdfeTo sum
up, Poinsot had taken the results of the analytroadstigations of rotations and transformed them
into a new geometrical form which brought to ligimt analogy between linear motion and rotation.
He interpreted this analogy as the discovery ohiaden” physical entity whose measure was
given by the moment of the “force” animating a twig body.

% Poinsot 1806.

3 poinsot 1806, p. 345.

% poinsot 1806, p. 359-365.

% poinsot 1806, p. 360-361. For a discussion of $uis proof see Caparrini 1999, p. 51-53.
3" poinsot 1806, p. 361.

3 poinsot 1806, p. 346.

%9 Dugas 1988, p. 354-360.

“° Poinsot 1806, p. 362.
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7. Reception and critique of the theory of couplesPoinsot's "New theory of
rotational motion" (1834)

French mathematicians appreciated Poinsot's apprdad not his geometrical formalism or his
physical interpretation, and tried to give alteiveatanalytical formulations of his results. Silvio
Caparrini has given a thorough account of howtuaydng rotation, scholars started developing an
analytical formalism which in many ways correspahtie vector algebra, and | shall only sum up
his remarks, which offer a clear example of coetiotuof physics and mathematitsSimeon
Denis Poisson hardly mentioned couples and gavenportance to the notion of "momentum”,
Jacques Philippe Marie Binet introduced the notiodn"aeorial velocities", Jacques Frédéric
Francais developed an analytical theory employioig$dt's idea of the conservation of couples and
mentioned the conservation of moments of rotatinr, only in terms of the three componefits.
Thus, while Poinsot's results were slowly embedidethe analytical context, his idea of a new
physical mathematical notion found little attention
In 1826 Augustine Louis Cauchy published a seriegssays on his new theory of "momens
lineares”, in which he reformulated and partly gaheed Poinsot's geometrical theory of moments
of force®® Cauchy showed hot to construct the "vectorial" rantof any quantity represented by a
directed segment and mentioned the quantity of anois an example, although he only treated
exensively the case of moments of for¢eRoinsot accused him of having simply translated hi
own theory of couples and moments into another famd a dispute ensued in whose course
Poisson defended Cauchy by claiming that Poinse¢slt had already been obtained by Euler and
Laplace. Poinsot replied to this accusation byeusecbring the importance of giving physical
content to analytical expressions. He summed upethdts by Euler and Laplace and then stated:

Mais il faut bien remarquer ici que ces théorenmeesanstituent point la composition

proprement dite des moments. Cette compositioatazet je diraei méme, n'a pu étre

connue que par la théorie des couples. Et en e#aju'on appelait le moment d'une

force par rapport a un point, ou un axe fixe, it'@aque-la, pour les géometre, qu'une

simple expression de calcul, un produit abstraitlédux nombres, dont I'un marque une

certain force, et l'autre une certaine ligne; etél semble qu'il ne pouvait venir a

personne l'idée de chercher des lois de compostiest-a-dire, des lois d'équilibre

entre de tels produits. [...] il fallait une notistatique, qui manquait alors aux

géométres, et cette notion est celle du cotiple.
Poinsot was here of course arguing "pro domo dua"the best proof that his geometrical physical
interpretation of previous analytical results wasaoaiginal, fruitful contribution to the science of
mechanics was the fact that, thanks to it, he cbuliy forward a "New theory of the rotation of
bodies” ("Théorie nouvelle de la rotation des cgri834) for which he is mostly remembered
today. In 1834 Poinsot presented his work to thesPecademy and then published it as a short
memoire in which he only made use of geometricgumrents expressed in verbal form: no
analytical formulas were presefit. In this text he employed his methods of geomatric
representation to express the motion of a fredigtiry body in terms of two cones along which the
instantaneous axis of rotation of the body movdthadst twenty years later, in 1851, he published a
book with the same title of the memoire in whicle tbrevious results were expressed also in
analytical form and expanded up8nin this later text Poinsot took up again the scbjef
conservation of forces and moments, which he hefierred to as "conservation of forces and of

couples™®

*L Caparrini 2002.

“2 Caparrini 2002, p. 160-162, 167-170; Grattan-Gessn1990, p. 364-365, 368-370; Francais 1813,-2321
“3 Caprrini 2002, p. 171-172, Grattan-Guinness 1990154-1157.

“4 Cauchy 1826.

“ Poinsot 1827, p. 4-5.

“% Grattan-Guinness 1990, p. 1233-1235; Poinsot 1834a

" Poinsot 1951b.

“8 Poinsot 1851b, p. 45-49.
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French mathematicians once again showed more stténetranslating Poinsot's theory into
analytical terms than in further developing hismgetrical approach and his ideas of new conserved
"forces" associated to rotations. However, the ti@®ory of rotational motion was appreciated by
engineers and won special praise from Léon Fouchalt known for his demonstration of the
rotation of the Earth by means of a pendufiifiwo of Foucault's devices - the pendulum and the
gyroscope - play a very important role in our stang | shall discuss them in the next section.

8. Foucault's pendulum, his gyroscope and the Engh reception of Poinsot's
theory (1851-1855)

Jean Bernard Léon Foucault, self-taught naturdiopbpher and inventor, had achieved his first
natural philosophical recognition thanks to experins on the velocity of ligh. Around 1850 he
conceived the idea of building a large pendulum sehplane of oscillation would slowly change in
orientation with respect to a terrrestial obsersecause of the rotation of the Earth. Foucault
experimented at first in his own basement, but thes allowed to set up his pendulum at the Paris
Observatory and in February 1851 presented higltseso the Academy: the measured daily
deviation of the oscillation plane from the terriedtvertical was given by a simple formula in
which the sine of the angle expressing the lod#tulze appeared. Foucault's result were greeted
with interest and the experiment was repeated enRharis Pantheon for the broader public: the
experiment was an instant success and was soaocatepl both in France and abroad. A pendulum
was swinging in London already in early April, e@af months later also in many other British
towns.

However, Foucault's pendulum was much more thaopallpr demonstration in which a scientific
theory could be shown to correspond to experiemtdle the motion of the pendulum did indeed
represent well-established astronomical and mecaldmowledge, it did so in a particulary simple
form which not only was immediately evident to thge (as long as the pendulum was long
enough), but could also be expressed in a vemesieary mathematical form, i.e. a sinus factor.
Yet the analytical theories of rotations showedenohthat simplicity and French mathematicians
felt challenged to relate the simplicity of thengulum to the complexity of the formulas. In other
words, a tension between two different represesmatof the laws of rotation - the pendulum and
the equations - had been constructed and nowahbae tesolved, possibly without declaring either
the equations or the pendulum as wrong. As we s®a| this was possible thanks to Poinsot's
theory of rotations.

In the short memoire discussing his experimentsjckolt had only offered a very sketchy
argument to justify the sine factor: a pendulunthat Pole would have an oscillating plane which
remained constant while the earth rotated undani, thus would appear to a terrestrial observer a
making a complete 360° rotation each dfaylowever, a pendulum standing at a generic latitude
would be forced to rotate along with the earth, #ing would have a more complex motion, which
Foucault regarded as a problem for mathematiciansolve: "Mais quand on descend vers nos
latitude, le phénomene se complique d'un élémesezadifficile a apprécier et sur le quel je
souhaite bien vivement l'attention des géometfeslé claimed to have performed an approximate
computation leading to the prediction of the sifaustor which the experiment confirmed. A few
days later Jacques Binet, who as we saw had wirdtteeatise on rotational motion, published a
short note in which he, as a representative of"'g@metres”, rose to the challenge posed by
Foucault® He described Foucault's results as "unexpectédat{éndu”), and continued: "En me
consultant, l'auteur [i.e. Foucault] désirait sav@iquel point le résultant mécanique auquel il

“9 Tobin 2003, here especially p. 150-151, 161.

0 The following discussion of Foucault's pendulurd gyroscope i®asedon: Broelmann 2002, p. 42- 50, Tobin 2003,
p. 137-160.

*l Foucault 1851.

2 Foucault 1851, p. 136.

*% Binet 1851.
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arrivait s'accordait avec la theorie mathématiqueaeec les déductions obtenues par les
géomeétres> Binet explained that Laplace had devoted somentite to similar subjects, but
without deriving any relevant results and that:i%8on a traité ce sujet [...]; cependant ce nptast
l'object spécial de ce grand géometre, et il net Pas occupe qu'incidemment'After this
cautionary statement, he went on to state - pgssitti without some embarassement - that Poisson
had claimed that the force perpendicular to thenglaf oscillation was too small to have an
appreciable effect on the pendulum, and concludetesow lamely:

Cette conclusion parait contraire aux expérieneeldrFoucault; mais le passage que je

viens de citer permet un doute: Poisson ne rappadéde calcule de la force dont il

parle, et d'ailleurs il n‘est pas suffisant d'aveconnu qu'une force perturbatrice est

tres-petite pour conclure qu'elle ne produira gefiiet insensible aprés un grand

nombre d'oscillation2’
He then started an analysis of the problem in Veftdan in which he made use of Poinsot's
methods, considering the rotation of the pendulerepresented by a vector which could be
decomposed into two parts, one of which was lintedictive centrifugal forces that could be
regarded as causing the pendulum to devia@ne week later Binet complemented his first
memoire with the relevant analytical formulas verttin Poisson's notations, and recovered the
desired sine factof
At the same time, Poinsot published a short notehith he offered no formulas, but a physical
interpretation of the pendulum experiment in teraisthe notions on which he had built his
dynamics of rotation: he explained that it was gading to regard the movement of the pendulum
as due to some force because the phenomenon ditfumalamentally” ("au fond") depend on
gravity or any other forc®. The key feature of the pendulum, explained Pojnsas not that its
plane of oscillation moved, but that it remainedistant, or rather attempted to remain as constant
as possible under given conditions. It would beriedting, he continued, to construct a device
whose plane of rotation would remain perfectly imat with respect to "absolute spaé'He
described such an instrument, which involved anilaing spring, and explained that, in this case,
the "couple animating [the device] in the begintiimguld be conservef.
Thus, Poinsot interpreted Foucault's pendulumzeridal expression of the conservation of couples
on which he had long since attracted attention, @ogosed a new experiment demonstrating the
conservation in perfect form. Foucault apparentty bt build Poinsot's spring-contrievance, but
he did construct an instrument which representedsets conservation of couples in the most
perfect form: the gyroscope. Foucault realized degice one year after the pendulum, in 1852, and
he did so by employing Poinsot's theory of rotatiamd possibly also by discussing the problem
with him in persorf” The gyroscope, which had already been conceivedtigr authors, is an
instrument which is build and set up in a framesuth a way, as to be able (at least ideally) to
rotate free from the action of gravity and of fiact. Under such ideal conditions, of which Foucault
managed to give an extremely good approximatian,'tbuple” of the device remained constant in
intensity and direction, and therefore the instrotmeould be seen to mantain always the same
orientation with respect to the fixed stars. Theaidf the gyroscope was not new, and other scholars
and practitioners worked at building one, yet Faltcaas the first one to present a working model
to the Paris Academy and in 1854 he travelled tgld&™ and demonstrated the device at a meeting
of the British Association for the Advancement ofefice®®
Foucault's experiments had started an interesitations both in academic circles and among the

> Binet 1851, p. 157.

* Binet 1851, p. 157.

% Binet 1851, p. 157-158.

" Binet 1851, p. 158.

%8 Binet 1851, p. 197-205.

%9 Poinsot 1851a, p. 206.

¢ poinsot 1851a, p. 206.

¢ poinsot 1851a, p. 207.

%2 Foucault 1852; Tobin 2003, p. 161.
% Tobin 2003, p. 166-167.
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broader public and brought attention also to Pdisstheory of rotation: as we have seen, the
expanded version of his treatise on the subject puddished in 1851, possibly in context of the
enthusiasm for the pendulum, and a second printeoge out a year later, as the gyroscope
appeared? However, the physical notions that Poinsot had@ated to his formalism did not gain
any followers in France and so, to follow the ermse® of angular momentum, we shall have to
move our attention to Britain.

9. The theory of couples in Great Britain and the dfinition of "angular
mometum" by Robert Baldwin Hayward (1856)

In the same year in which the French original oinBat's "New theory of the rotation of bodies"
(1834) was published, an English version of thekwappeared under the title "Outlines of a new
theory of rotatory motion® The English translator had added a commentaryafswappended to
the booklet the translation of those passages msBis memoire from the year 1806 which dealt
with the conservation of forces and moments. Pdmswoidance of analytical computations made
his work particularly suitable for Brisish readefs early reception of Poinsot’s theory of rotation
took place in Ireland, where a reform of mathensatiad been started in 18%3In 1844 James
MacCullagh lectured at Dublin university on thedheof couples and also expanded on Poinsot's
results®” He made use of analytical methods, but also to@k the Frenchman's interpretation of
rotational motion in terms of a conserved colple 1845 and 1848 and William Rowan Hamilton
presented to the Royal Irish Academy two papersviiich he discussed the application of his
method of quaternions to Poinsot's and MacCullagisslts® The theory of couples also appeared
in other works, as for example the "Mathematicah@ples of mechanical philosophy" (1836) by
John Herny Prat® However, in these works no particular emphasis patson the physical
guantity which Poinsot had claimed to have discede&and which he had referred to as a conserved
"force”, "moment” or "couple"” associated to theatmnal motion of a body. Indeed, both
MacCullagh and Hamilton followed rather an anabftithan a geometrical approach. The first
author to give prominence - and a new name - tondedts “conserved couple” was the
mathematician Robert Baldwin HaywardHayward had studied in London and Cambridge and
had been 4th wrangler in the 1850 Tripos, thus goéitly immersed in the Cambridge style of
mathematical and physical education, which gavéiquéar prominence to Newton’s geometrical
approach to calculus and to the notion of forceinagulse’> Hayward would later become a
schoolmaster in mathematics, but in 1856 he wa€ambridge presenting to the Philosophical
Society a paper on rotational motion in which h#oduced “angular momentum”, discussing
Foucault's pendulum as an exampfeHis paper started with two quotations by Poinsottie
necessity of going beyond analytical formulas tcspa science and continued: "My object is not so
much to obtain new results, as to regard old oomfa new point of view which renders all our
equations directly significant

Hayward offered a treatment of the motion of aekdenensional body which made use of analysis,
but at the same time he refined and exploited themgtrical-physical notions introduced by
Poinsot. The first part of the paper was purelyheatatical, showing how to manipulate quantities

% poinsot 1852.

% poinsot 1834b.

% Grattan-Guinness 1990, p. 432-433.
" MacCullagh 1849, Moyer 1973.
® MacCullagh 1849, p. 335-336.
%9 Hamilton 1845, 1848.

0 Pratt 1836, p. 20.

" Anon. 1950; Hayward 1856.
?Harman 1998, p. 19-27.

3 Hayward 1856, p. 18-20.

" Hayward 1856, p. 1.
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which we would call vectors and axial vect6tsit the beginning of the second part, the author

wrote:

[...] since every system of forces is reducibla ingle force and a single couple, we

have to investigate the effects of that force, éedeffects of that couple. Now we know

that the resultant force determines the motiomefdentre of gravity of the system, be

the constitution of the system what it may. In likanner the resultant couple

determines something relatively to the motion @f $gstem about its centre of gravity,

which in the case of an invariable system defitesotion of rotation about that point,

but which in other cases is not usually recognaed definite objective magnitude, and

has therefore no received name. This defect witklpeedied by adopting momentum as

the intermediate term between force and velocitg, lay regarding as distinct steps the

passage from force to momentum and that from mametd velocity. In accordance

with this idea we proceed to show that as in ast problem we shall be concerned

with the magnitudes, force, linear momentum or mmtwn@ of translation, and linear

velocity or velocity of translation, so in the otlvee shall be concerned with the

corresponding magnitudes, couple, angular momeotumomentum of rotation, and

angular velocity or velocity of rotatiors.
Hayward interpreted Poinsot's theory by resolvidminhe perceived as a tension between velocity
and force (i.e. between movement and its causeptbyducing the notion of momentum, and in
particular of angular momentum. In this way he &atew, abstract representation of rotational
movement which had emerged in analysis and had geemetrized by Poinsot on the same
footing as the old idea of the "momentum", i.e. timepulse" of a moving body. One may imagine
that this step was made easier by the growing fantyl with spinning tops, gyroscopes, train
wheels and engines offering a three-dimensionaladycal representation of the force of rotation.
Like Poinsot had done, Hayward gave particular pnemce to the conservation of linear and
angular momentum and underscored the continuitwdest the two notions by speaking of a
"conservation of momentum™ which could be appliesthbto the linear and the angular one,
corresponding respectively to the "conservatiommmition of the centre of gravity" and to the
"principle of the conservation of ared$"Hayward remarked that some elements of his theory
could be expressed in terms of Hamilton’s quantersii®

10. James Clerk Maxwell's spinning tops (1855-56)

Hayward's new formulation of the rotation of exteddodies was immediately noticed by a key
figure of 19th century science: James Clerk MakWeMaxwell had started his studies in his
native Scotland, at the University of Edinburghd dnad continued them in Cambridge. In 1849 he
had witnessed the experiments performed in EdirtbbggJames David Forbes with spinning tops
carrying discs painted in sectors of different cotowith the aim of studying the composition of
colours, and in 1854-55 he took up the same lineeséarcii® In 1856, possibly after having
experimented with the gyroscope, he published a stode "On an instrument to illustrate Poinsot's
theory of rotation”, where the instrument in quastivas none other than a spinning top carrying
colored discs: "On the upper part of the axis haf $pinning top] is placed a disc of card, on which
are drawn four concentric rings. Each ring is deddnto four quadrants, which are coloured red,
yellow, green, and blue. The spaces between tlys @ne white. When the top is in motion, it is
easy to see in which quadrant the instantaneossis&t any moment and the distance between it
and the axis of the instrumeft"Thus, Maxwell had interpreted a rotating instrumka was

S Hayward 1856, p. 1-7. See also Caparrini 20027p-177. As Caparrini notes, in 1892 Hayward piigiisa book
on vector algebra.

®Hayward 1856, p. 7.

"Hayward 1856, p. 9.

8 Hayward 1856, p. 12.

9 My discussion of Maxwell's life and work are laggbased on Harman 1998.

8 Harman 1998, p. 37-48; Maxwell 1855.

8 Maxwell 1856, p. 247.
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familliar with as a representation of a geometrenadlytical theory of rotation, like the pendulum
or the gyroscope.

One year later Maxwell published a much longer ys€n a dynamical top, for exhibiting the
phenomena of the motion of a system of invariabtenfabout a fixed point, with some suggestions
as to the Earth's motiof* This time, the reference to instruments demorisgatotational
phenomena was very prominent: Maxwell started higep stating that "To those who study the
progress of science, the common spinning top 8rdel of the labours and the perplexities of men
who had successfully threaded the mazes of planetations.” and then went on to praise a series
machines which had been used to visually repretbenintricacies of rotation, among them the
Earth model of Johann Bohnenberger and Foucaultssgope® Before describing his spinning
top, Maxwell expounded briefly the theory of rotetifollowing the method of Poinsot, which he
praised as "the only one which can lead to a trnewkedge of the subject® He then
acknowledged the "important contribution” made bgyWard, giving the full reference of his
paper, and then choosing as the centre of hisiesdt Hayward's notion of "angular momentum®
and of its conservation "in direction and magnitLifdn his study of Maxwell's natural philosophy,
Peter M. Harman remarks that Maxwell's appreciatibRoinsot's geometrical approach and of the
notion of angular momentum can be understood enctimtext of the "Newtonian" tradition of a
geometrical interpretation of calculus and of a Inaeics based on the notion of "force" with which
Maxwell had come into contact during his study dirburgh and Cambridg8.Maxwell made use

of the notion of angular momentum and its consemadiso in the essay on the stability of Saturn's
rings written for the Adams prize of the Universiff Cambridge in 185%. For our subjet it is
important to remark that also in this case Maxvielilt a mechanical instrument whose motion
represented the dynamics he was discussing in twalyform® As Harman noted “the
abstractions of Cambridge mathematics were rendersghl, and transformed into Scottish
physical realism® | would like to underscore the fact that the ciuition of mechanical models
(spinning top, pendulum, gyroscope, Saturn's ringsere by no means a by-product of the
knowledge-building process and instead contributegdhape it in an essential way. As we have
seen, such devices did not just "visualize" thexprmmit rather represented a step along a complex
path of physical-mathematical abstraction: theyenasnceived on the basis of refined analytical
notions (e.g. Euler's equations) and complemerttethtby offering a representation of rotations
which could be seen as fitting not only Poinsg&ometrical model, but also his natural
philosophical interpretation of the dynamics of iesdbased on a extension of the "Newtonian™
notion of force. As to the "Scottish physical reall, it is intereseting to note that, in his essay
the rings of Saturn, Maxwell put the conservatidmamgular momentum on the same footing as the
conservation of energy, and the same was done ondess at the same time by two other Scottish
natural philosophers who most contributed to cngathe “science of energy”: William Thomson
and William John Macquorn Rankif&.

11. William J. M. Rankine: angular momentum and appied mechanics (1858

William John Macquorn Rankine had studied at thévehsity of Edinburgh, but had left without
taking a degree and had subsequently worked asigneer, at first mostly in railway and train
constructiorr* He had devoted much attention to rotations angaiticular to the stress to which

8 Maxwell 1857.

8 Maxwell 1957, p. 248. On Bohnenberg's machinepdahof Earth precession see: Broelmann 2002, @137
8 Maxwell 1857, p. 250.

8 Maxwell 1857, p. 250.

8 Harman 1998, p. 13-27, 35-36.

8 Harman 1998, p. 48-57, especially p. 55.

8 Harman 1998, p. 58.

8 Harman 1998, p. 57.

% Smith 1998.

91 Hutchinson 1981; Parkinson 1975.
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rotating elements such as railroad axles were stdgeLater on, he published extensively both on
engineering and on the theory of matter and heatud 1850 he developed a theory of matter,
heat and light based on the notion of "moleculatives"* In these essays, no notion similar to
angular momentum played an important role, butvasshall see, they later became the basis for
some reflections by William Thomson which are dévance for the present subject.
In 1858 Rankine published a very influential "MahoBapplied mechanics" in which he used both
the name and the notion of angular momenttifthe book contained both well established results
and recent innovation in the field and treatecesively all aspects of material stress and stgbili
The author set much worth in connecting theory pratctice, and therefore at the beginning
expounded the general principles that should béegpio the individual cases. Rankine introduced
angular momentum when discussing systems of irttegabodies. He explained how to compute
the absolute value of the quantity and then stated:

Angular momenta are compounded and resolved lilce$) each angular momentum

being represented by a line whose length is prapwt to the magnitude of the angular

momentum and whose direction is perpendicularéqthne of the motion of the body

and of the fixed point and such, that when the amotif the body is viewed form the

extre_mitgy1 of the line, the radius vector of the hegems to have a right-handed

rotation:
This definition took care of all possible ambigeg#i Rankine demonstrated the conservation of
angular momentum for a system of mass points aatddsthat this law was sometimes called the
"pinciple of the conservation of areds'ln the first edition of the manual, Rankine regetito the
work on rotation by Poinsot and Maxwell, but he dat mention Haywardf In later editions of the
work, however, he acknowledged that "The term amgwhomentum was introduced by Mr.
Hayward"?’
Later on, he discussed the motion of rigid bodres right at the beginning stated that the variation
of linear momentum were due to the resultant eateforce, while those of angular momentum
were the effect of the resultant coupiléfter having defined angular momentum for a sdiadly,
Rankine stated that also in this case the consenviw was valid and took this principle together
with tgr;e conservation of energy as a starting pfmnhis discussion of the motion of a free rotgtin
body:

12. William Thomson's "momentum of momenta" and themagnetic properties
of matter (1857)

We now turn to a third representative of the "Ssbtphysical realism": William Thomson (from
1897 Lord Kelvin). Thomson had learned about Pdisgbeory of couples already in 1839, when
he was only fifteen years old, studying at Glasgomilege. His teacher John Pringle Nichols, who
also introduced him to the work of Jean Baptistepb Fourier on heat transmission, had "recently
got hold of a new book — a pamphlet of some eiglaiges — on Couples, and made his students
write Christmas essays on the Theory of Coupi®sThe pamphlet was either the English
translation of Poinsot's book or the French origima1840 Thomson bought himself also a copy
of another memoire by Poinsot which dealt with dugiilibrium conditions® In 1845, when he

92 Rankine 1851a 1851b.

% Rankine 1858.

® Rankine 1858, p. 505.

% Rankine 1858, p. 506-507.

% Rankine 1858, p. 535.

9" For example in the fourth edition: Rankine 18685@6.
% Rankine 1858, p. 513.

% Rankine 1858, p. 529-534.

10 Thomson S. P. 1910, p. 13, 73.

101 Smith and Wise 1989, p. 366.



15

was at the University of Cambridge, Thomson sgeme time both experimenting with rotating
bodies and reflecting on the mathematics of rotdfidIn the following years he did not study the
subject further, but in the 1850's he took an edem the theory of "molecular vortices" which, as
already mentioned, Rankine had developed to expiedt phenomend® While Rankine had made
no use of the notion of angular momentum, in Thamsstheory it played a key role to bridge the
gap between mechanics and electromagnetism.
Rankine had proposed a quite detailed mathematissdry of matter according to which the
elements of matter had a more or less spherical ford were constituted by a nucleus and a fluid
atmosphere. The fluid in the atmosphere moved imicas having their axes of rotation directed
along the radii of the sphere. It is not necesarys to go into the details of Rankine's modat, b
only to note that in 1857 Thomson took it as atstgupoint to offer a "Dynamical illustration ofeh
magnetic and the helicoidal rotatory effect of sarent bodies on polarized lightIn his paper
Thomson offered a mechanical explanation of thecefbf magnetism on the transmission of
polarized light through a transparent medium. Thmmgroposed to consider the velocitiy of
transmission of light as resulting from the composiof the velocity of the light wave with that of
rotational motions internal to the body, such askR@&'s molcular vortices. Thomson recalled that
Ampeére had already linked magnetism to microscaoiceulating electrical currents and stated:

Hence it appears that Faraday's optical discoverythe effect of magnetism on light ]

affords a demonstration of the reality of Ampéexplanation of the ultimate nature of

magnetism; and gives a definition of magnetizatiothe dynamic theory of heat. The

introduction of the principle of moments of mome(ithe conservation of areas") into

the mechanical treatment of Mr. Rankine's hypotheti'molecular vortices," appears

to indicate a line perpendicular to the plane efrisultant rotatory momentum ("the

invariable plane") of the thermal motions as thgnadic axis of a magnetized body,

and suggests the resultant moment of momenta sé tmetions as the definite measure

of the “magnetic moment®
As we see, Thomson here made use of the notiongflar momentum ("moment of momenta™)
and of its conservation, for which he quoted inckeds the traditional analytical names, probably
for the benefit of some readers. He proposed totifyethe “moment of momenta” of the vortical
motions with magnetic moment: an idea which sudivet only his model, but also classical
mechanics and electromagnetism, to be taken ower qnantum theory. Thomson offered no
mathematical details of how the theory should Iblkd, in contrast to Rankine, who had developed
a very detailed hydrodynamical model for the vasicOn the contrary, Thomson professed himself
completely agnostic as to the exact mechanism ttema

The explanation of all phenomena of electromagradtraction and repulsion, and of

electromagnetic induction, is to be looked for dirip the inertia and pressure of the

matter of which the motions constitute heat. Wheethis matter is or is not electricity,

whether it is a continuous fluid interpermeating #pace between molecular nuclei, or

is itself molecularly grouped; or whether all maisecontinuous, and molecular

heterogeneousness consists in finite vortical le¢rotelative motions of contiguous

parts of a body, it is impossible to decide, andh@aps in vain to speculate, in the

present state of scienﬂ:‘%.
The notion of moment of momentum was particulaitiyniy to Thomson'’s attitude: on the one side
it was a rigorously defined mathematical-mechanrezion, while on the other it did not require
detailed speculations on the mechanical structdirenatter'®” The connection to the magnetic
moment appear plausible because that quantity, was, usually represented by means of an
oriented segment and, since angular momentum wawrkrno be conserved, the link could be
regarded as valid independently of the continuoosaments going on inside matter. Thomson's
theory later provided a starting point for MaxweHllectromagnetism and, although the hypothesis

192 Thomson S. P. 1910, p. 124, 737.

193 Rankine 1851a, 1851b; Thomson 1857.
194 Thomson 1857.

1% Thomson 1857, p. 152.

1% Thomson 1857, p. 152.

7 Harman 1982, p. 69-71.
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of molecular vortices would eventually be discardbée connection between magnetic moment and
angular momentum remainé¥. Thus, Thomson had taken up the idea that behimddhservation

of moment of momenta lay a physical quantity oftipalar relevance and had connected it with a
phenomenon of non-mechanical nature: magnetic mbmen

In the 1860s Thomson teamed up with another Shotizgural philosopher, Peter Guthrie Tait, to
write a "Treatise on natural philosophy" which sldooffer an overview of that discipline in which
mathematics would closely fit physits. Most prominent among their principles of natural
philosophy was the conservation of energy, but T$émmand Tait also made large use of simple
machines such as the screw to express the comtetitsir subject, and supported the geometrical-
physical formalisation of mechanics which undersdothe significance of vectorial notions like
"momentum” and "momentum of momentuth®.Because of Thomson's oppositions, the book
made no use of Hamilton’s quaternions, even thdtgghwas “an ardent disciple of Hamilton”, as
Maxwell put it, regretting that the manual did mohploy that new analytical tob* Once again,
we see how the choice of mathematical forms wasetydinked to personal images of scientific
knowledge: Thomson saw quaternions and vector edgeb a hindrance to physical understanding,
rather than as a formalisation which gave promieegiacphysical meaning, as modern physicists
regard it. Following Rankine's example Thomson &aitl stressed the analogy between linear and
angular momentum, stating their conservation lamg adding at the end that the conservation of
momentum of momentum "is sometimes called Conservadf areas, a very misleading
designation®'?

13. Angular momentum at the crossroad between geomng natural philosophy
and engineering

In the previous sections | have endeavoured to $fmwthe notion of angular momentum emerged
from the convergence of a number of factors: theeldpment of the mechanical analysis of
rotational motion by French mathematicians; thetezpretation and expansion of these results in
new physical-geometrical terms; some specific roinilosophical ideas of motion and its causes
and, finally, the construction, use and discussibmarious mechanical instruments representing
the properties of rotational motion. Some cructaps in this process were taken in Britain, where
both geometrical formalism and mechanical modelseweore present in the academical milieu
than in other European countries and enjoyed aehigpistemological status. In the context of
Victorian natural philosophy the notion of angutaomentum could emerge and thrive because it
was supported by different but complementary repregions of nature and its regularities.

The example of Thomson's theory of magnetism antkentar vortices has shown how angular
momentum, being linked not only to a specific matagcal formalism, but also to a physical
picture, could provide a means of exporting anef§tmechanical ideas and methods into other
areas of science, as was also the case in Maswethematisation of electromagnetic thedty.
During the second half of the 19th century rotatim@chines of various kinds were used by British
scientists not only to demonstrate theoretical @fodf natural phenomena (atomic structure, heat
theory, electromagnetism), but also to translatamthnto a new formalism which eventually
allowed to develop them further, as in the caseTait's "smoke ring" demonstration of Hermann
Helmholtz's theory of hydrodynamic vortices or Tleam's frequent use of gyrostats to model
electromagnetic theories

Outside of Britain, however, the notion of angutesmentum did not have much fortune. In France

1% Harman 1998, p. 109-112, 115-124.

19 Thomson and Tait 1867. On the book see: Smithvdisd 1989, p. 348-395.
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Jean Marie Constant Duhamel devoted much spaces itextbook of mechanics to the theory of
couples, but only mentioned as an aside the fattttite moment of the quantitiy of motion was
conserved in absence of external forces and monwdnisrces, and presented this result as an
"application of the principle of area¥'® In Germany Hermann von Helmholtz formulated anedi
theory of vortex motion in matter, in which howevehe notion of angular momentum did not
appear, although Helmholtz made use of Poinsotmdlism to compose rotation with the
parallelogram rulé® Ernst Mach, in his treatise on "Die Mechanik inethEntwicklung" (1883),
explained the law of "conservation of areas" withowentioning angular momentum and only
added at the end of the discussion that this wagteralization of the principle of inerti§"’

14. The "Theory of the spinning top" by Felix Klein and Arnold Sommerfeld
(1897-1903)

The first German text in which angular momentum wmassented as a physical quantity of
relevance was the treatise "Uber die Theorie desiskis" (1897-1910) written by Felix Klein
together with Arnold Sommerfefd® The book was due to the initiative of Klein, whadhbeen
pursueing the aim of reintroducing geometrical mdthinto mathematics, and it was an innovative
attempt to combine the analytical and the geonadtapproach to the study of rotation. It is no
chance that the text put at its centre a mechanlieaice, the spinning top, as representation of
rotational motion, since the authors repeatediytephland praised Thomson and Tait, and followed
them in making use of a "Newtonian" concept of édr¢ They also acknowledged their debt to
Poinsot, whose "beautiful methods" ("schéne Methtdehey cultivated in their treatise, and
giving particular importance to a notion of impulse

Noch wichtiger flr uns aber ist die volle Klarhéfier die mechanischen Ursachen der

Bewegung , Uber die ins Spiel kommenden Krafte.Wdirden uns diese mdglichst

konkret im Raume als Vektoren versinnlichen; besositlVert legen wir auf die

Ausbildung und konsequente Benutzung des Impuldtsegrorunter wir diejenige

Stosskraft verstehen, welche imstande ist, dieijg@eBewegung momentan von der

Ruhe aus zu erzeugef.
While one might be tempted to equate the "impuwgiti linear momentum, this was only true for
point masses: in the case of solid bodies, the isepwas divided into a translational and a
rotational part, which Klein and Sommerfeld in first volume of the work (1897) referred to as
"Schiebeimpuls” and "Schraubeimpuls”, while in tat@lumes the term "Drehmoment” was
introduced™“* The authors made clear that their notion of rotati impulse was precisely the one
introduced by Poinsot: "Der Begriff des Impulses di@eisels ist von Poinsot in den mehrfach
zitierten Arbeiten vollstandig entwickelt worden.ieD Bezeichnung Poinsot's lautet etwas
umstandlich couple dimpulsior® | would like to suggest that this emphasis on #rgu
momentum as a quantity as physically foundamestéiheaar momentum may have played a role a
few years later, when Sommerfeld tackled the probdé the quantization of atomic motion. In the
last part of this paper | shall briefly discuss hthe notion of angular momentum was used as a
means to bridge the gap between classical and gugpitysics.

15 puhamel 1863, p. 178-179.

16 Helmholtz 1858. On Helmholtz theory of hydrodynamhd magnetic vortices see: Silliman 1963, p. 462-
17 Mach 1883, p. 171-173, 281.

18 Klein and Sommerfeld 1897-1903.

19 Harman 1982, p. 69-70; Klein and Sommerfeld, 1§9B9.

120 Klein and Sommerfeld 1897, p. 4-5.

121 Klein and Sommerfeld 1897, p. 70-104; Klein andn8eerfeld 1903, p. 514.

122 Klein and Sommerfeld 1897, p. 104.
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15. Angular momentum and the quantum: Niels Bohr'satomic model (1913)

In a series of studies published in 1913 Niels Bmoposed his highly innovative atomic thet.
Starting point for his reflections was Ernest Ruibrel's model of the atom as a microscopic Solar
system with an electron orbiting around a positivetharge nucleus. This motion, when treated
according to classical mechanics and electromagnetvas known to give rise to unstable
configurations in which the atom would steadilydosnergy through radiation and eventually
collapse. Bohr's crucial step was to assume th&emnde of "stationary states" in which atoms did
not radiate and therefore maintained a constantevaf the energy. Bohr computed the stationary
energy values by first making use of classical idas and then imposing on the result an
additional condition involving Planck's constanaid an integer number (“quantum number”).
The condition was such, that agreement with obskedata could be obtained and, for the hydrogen
atom, the energy W was bound to have the form:

W(1) = (2®m &Y/(h?7%). 1%

Here m and e were respectively the mass and chadrglee electron. Radiation took place in
separate emissions or absorptions associated tvatigtion of the atom from one stationary state
to another. Bohr could not offer any formal destwoip of these "jumps" other than the frequency
condition Whiia-Wiina= hv, wherev was the frequency of the emitted ligft.

Bohr's theory could predict the values of the gjédines of hydrogen and also qualitatively
explain the discrete structure of atomic and mad&ecspectra. Yet he recognized that his model,
while successful from the phenomenological poinviefv, hardly provided a physical explanation
for atomic structure, and offered a tentative iotetation of his results in terms of what he called
"symbols taken from ordinary mechanic¢é®He pointed out that the quantization conditiontfee
energy took a very simple form when expressednmgeof angular momentum: "If we therefore
assume that the orbit of the electron in the statip states is circular, the result of the cal¢otat
on p. 5 [i.e. the formula for W] can be expressedtlire simple condition: that the angular
momentum of the electron round the nucleus in tosiary state of the system is equal to an entire
multiple of a universal value, independent of tharge on the nucleu$®

So Bohr obtained for the angular momentum M thedden: M=t h/(2t), wheret was again an
integer quantum number. This expression had the $arm of the various quantization conditions
that, following the success of Max Planck's blackiy radiation formula, had been employed in
various fields of physic¥® Bohr's condition corresponded to quantizing theoalie value of
angular momentum and his specification that onailshassume circular orbits indicates that he
was not making any effort to give a detailed phgfsicterpretation of his model: the “self-evident”
connection between the physical notion of angulamentum and quantum physics was all but
evident to him.

16. Arnold Sommerfeld's atomic angular momentum andits connection to
magnetic moment (1915-1919)

While Bohr had regarded the analogy between clalssingular momentum and the quantity
involved in his atomic model as purely symboligdainold Sommerfeld took the opposite stance. In
a series of papers published from 1915 onward pareded and refined Bohr's theory in such a way
as to accomodate three integer quantum numbeesaohstf only one, and was able to at least partly
make sense of the fine structure of atomic spexgravell as of the characteristic of the radiation

123 For the present study, it sufficec to discussctivtents of Bohr's first article Bohr 1913. Foriscdssion of the early
stages of development of quantum theory see fanpkaJammer 1966, p. 69-88.

124Bohr 1913, p. 8.

125 Bohr 1913, p. 8.

126 Bohr 1913, p. 15.

127Bohr 1913, p. 15.

128 Bohr 1913, p. 15; Jammer 1966, p. 46-61.
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emitted and absorbed under the influence of magretielectric fields?® What is of particular
interest for us is that Sommerfeld achieved hisltesot purely on the basis of analytic prowess,
but also by following a physical picture of statoyn states in which the "mechanical” notion of
angular momentum served as a means to bridge theegaveen classical and quantum theory.
Like Bohr, Sommerfeld considered the atom as a é&e&pl system in which a small electron
orbited around a large nucleus, but other than Behdeployed the whole apparatus of analytical
mechanics to consider the motion of the systemremging it in terms of the canonical conjugate
variables (q, p}*° The position g was expressed at first in polardioates (rp), later in spherical
ones (r9, v), and in both cases the generalized momenta psgmwynded to angular momentum. In
the first case Sommerfeld only took into accoumttiio degrees of freedom of the electron on the
plane of the (elliptical) orbit, whose dimensionslaeccentricity could vary, and so the angular
momentum p was constrained to be in the directempgndicular to the orbit and only had a single
degree of freedom. Thus, even when allowing etlgitorbits, imposing quantization conditions on
this classical constellation amounted to quantrdg the absolute value of angular momentum, like
Bohr had done and, unsurprisingly, Sommerfeld enghd obtained exactly the same result as Bohr
had reached. To go beyond, he decided to quanlizihrae degrees of freedom of p, which
amounted to quantizing not only the dimensionseawentricity of the orbit, but also its orientation
in 3-dimensional space - a "space quantization"aifRquantisierung”), as it would be called
later’*! This step proved essential for taking into accaetativistic effects and so finally going
beyond Bohr's model and explaining how fine strietf hydrogen and the multiplet structure of
complex spectra depended on two quantum nuntffers.
Despite the phenomenological success of his mdsietnmerfeld felt that space quantisation
required some physical justification, since it iredlan arbitrary choice of a preferred direction in
space - the z-axis of spherical coordinates - toubed when imposing physically relevant
guantization conditions. Therefore, he introdudezlgrocedure with these remarks:

Es entsteht die Frage, ob sich auch die Lage dem Bguanteln” 1al3t. Dazu muf3

allerdings wenigstens eine Bezugsebene im Rauneaestinet sein, sei es durch ein

aul3eres elektrisches oder magnetisches Feld oddr die Konstitution des Kernes

selbst, z.B. einen diesen umgebenden ElektronerBigigden kraftefreien

Wasserstoffkern dagegen ist die Lage der Bahneten®angel an allen

Bezugsstiucken physikalisch unbestimmt und dahédr aiotit quantentheoretisch

bestimmbar. Wenn wir trotzdem eine Quantenbedindundie raumliche Lage der

Bahn am Wasserstoffmodell entwickeln werden, sdies folgendermassen gemeint:

Wir denken uns durch einen (aul3ere oder innergdikdljsche Ursache eine Richtung

im Raum ausgezeichnet, lassen aber die Starkellokmsas Null abnehmen, so dal’ wir

wieder genau diese Ursache quantitativen Verh&krisben wie bei der Bewegung im

Felde des reinen Wasserstoffkernes, aber mit degjflithdeit der Orientierung gegen

eine Vorzugsrichtung (oder Vorzugsebene). Diesétlig konnen wir dann zur Achse,

digrs]le Elggne zur Aquatorebene eines raumlichenk@olainatensystems@, y

wahlen.

Thus, Sommerfeld justified his apparently arbitrahpice of reference frame by imagining that a
"physical cause" like a magnetic or electric fielidpresent, would constrain the motion of the
system. He then let the intensity of the imaginfeeld go to zero, to obtain a preferred directian i

space despite the rotational symmetry of the systspart from the obvious methodological

problems inherent in this kind of "symmetry brea@Kinwhat is interesting for us is that here
Sommerfeld was assuming that the "quantistic” argolomentum would be affected by electric
and magnetic fields like its classical counterpant.other words, he was implying that the
mathematical formulas which were called "angulammantum” in his quantum theory stood in a

129 Jammer 1966, p. 89-96. In the following, | shadicdss Sommerfeld's results as presented in therpgpmmerfeld
1916.

130 sommerfeld 1916, p. 14-28.

131 Sommerfeld 1916, p. 28-33.

132 Sommerfeld 1916, p. 44-94.

133 Sommerfeld 1916, p. 29.
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physical relation, and not just in purely symbaddicalogy, to the classical quantity: like classical
angular momentum, also the quantistic one detemnitiee behaviour of the atom in an
electromagnetic field. Without any support from esments - which on the contrary suggested that
classical theory did not apply to atoms - Sommédriehs here postulating the validity of the same
connection between rotation and magnetisation winad been proposed decades earlier by
William Thomson. On the basis of this assumptionrtierpreted the quantum numbers linked to
space quantization as establishing the number sdible orientations which "angular momentum”
could take with respect to an external magnetielectric field. For a quantum number n=1 two
orientations were possible, for n=2 five, and 8d%

In his paper Sommerfeld did not commit himself &ippf on whether atomic angular momenta
could be considered equivalent to macroscopic oies, in his textbook "Atombau und
Spektrallinien” (1919) he clearly stated his opmithat, like energy, also linear and angular
momenta, i.e. "Impuls" and "Impulsmoment” were & understood as physical quantities whose
properties could be expressed both in classicalimgdiantum terms. In 1918 Wojciech (Adalbert)
Rubinowicz, who had formerly been an assistant dmi@erfeld in Munich, had postulated the
conservation of “angular momentum” during the iattion between atoms and radiations and had
used it to explain some selection rules of atonpecta’®® In his textbook Sommerfeld
summarized and expanded this idea, giving hissiyiport to Rubinowicz's results: "Wenn bei der
Konfigurationsdnderung des Atoms sich sein Impusrampulsmoment andert, so sollen sich
diese vollig und ungeschwacht wiederfinden in demmpuls und dem Impulsmomente der
Strahlung.**

To appreciate the radicality of this statement twas to keep in mind that, at that time, no
mathematical formalism for quantum theory existedvhose context the conservation could be
formulated, let alone proven. Moreover, in 1918 Bbhad proposed an explanation of selection
rules which did not require any physical interptieta of quantum numbers and was in better
agreement with experiment than Rubinowicz's propoBahr explicitely cast doubts on the
conservation of angular momentum for quantum systeklowever, Sommerfeld's physical
interpretation of atomic angular momentum was \datéd against Bohr's skepticism by the
experiment performed in 1921-22 by Otto Stern aradthér Gerlach.

17. The experiment of Otto Stern and Walther Gerlah: the operationalisation of
guantum angular momentum (1921-22)

In the summer of 1921 Otto Stern wrote a paper gsimyy "a method to test experimentally the
quantization of direction in a magnetic fieltf" Stern took Sommerfeld's idea on atomic angular
momentum and its connection to magnetic momeraad falue and suggested how they could be
put to the test:

In der Quantentheorie des Magnetismus und des Zesffalts wird angenommen, dal3

der Vektor des Impulsmomentes eines Atoms nur gastimmte diskrete Winkel mit

der Richtung der magnetischen Feldstarke H bildemkderart, daf} die Komponente

des Impulsmomentes in Richtung von H ein ganzzabligelfaches von h#2ist.

Bringen wir also ein Gas aus Atomen, bei denerggaamte Impulsmoment pro Atom -

die vektorielle Summe der Impulsmomente samtliéHektronen des Atoms - den

Betrag h/z hat, in ein Magnetfeld, so sind nach dieser Tleefin jedes Atom nur zwei

diskrete Lagen moglich, da die Komponente des Isypamentes in Richtung von H

nur die beiden Werte * htZannehmen kant?®
On the basis of Sommerfeld’s theory Stern treabedduantized angular momentum as a vector

134 Sommerfeld 1916, p. 32-33, Sommerfeld 1919, p-414. For a detailed discussion of this issue ¥ésnert 1995,
p. 80-83.

135 On the explanation of selection rules in the aldrfum theory see: Borrelli 2009.

136 Sommerfeld 1919, p. 381.

137 Stern 1921. On the Stern-Gerlach experiment asignificance see: Weinert 1995.

138 Stern 1921, p. 249.
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guantity J which really existed in space and hagiven length, but an as yet undertermined
orientation. He further assumed that this vectoad associated to a magnetic moment M = 1/2 e/m
J, just like in the classical ca58.When a beam of atoms passed through a magnelit fheir
angular momentum was forced to orient itself webpect to the direction of the field in one of the
two positions which were allowed by the quantunotigeand this would lead to a splitting of the
beam into two parts. In the classical case, instdsbeam would simply spread in a continuous
way and so it would be in principle possible totidguish the two cases. A short time later, helped
by Walther Gerlach, Stern performed the experimeith a beam of silver atoms which they
assumed to correspond to the case n=1 and thetefdudfil the conditions described by Stern in
his theoretical papef® The beam of atoms split into two parts and thesauthors could announce
"that the quantisation of direction [of angular metum] had proved to be a fact" ("Die
Richtungsquantelung im Magnetfeld [wurde] als Telsaserwieseny*

The result was received with some astonishmentbystientific community, as few had actually
regarded space quantization as more than a formatel yet the discrete splitting of the beam
offered an impressive evidence of the failure afslcal theory and implicitly supported the belief
that the quantum formalism for angular momentudeed represented a physical quantity which
was, if not identical, at least very similar to ttlassical notion bearing the same name. As in the
case of Foucault's pendulum, two different repriedem of what was assumed to be a law of
nature had been put near each other, and a nevicahystion had emerged from that tension:
guantum angular momentum. The fact that atomic langnomentum could be linked to magnetic
moment - and vice versa - proved to be of the utnmportance for the later development of
guantum theory, because it provided a means tcatipealize and investigate the otherwise very
abstract notion of atomic angular momentum: stuglylre behaviour of atoms in magnetic fields
(Zeeman, Paschen-Bach effect). Eventually, thigdeithe emergence of the concept of spin and to
the relativistic and quantum-field-theoretical getisation of angular momentum.

18. Conclusions

Combining the mathematical analysis of motion with geometrical representation of mechanical
entities and with a Newtonian notion of "force",ui® Poinsot developed the physical-mathematical
concept of a "conserved moment" which he usedrtbduexplore the dynamics of rotation.
Around 1850 this idea proved capable of bridgirgdhp between analytical mechanics and the
mechanical devices representing the propertiestational motion (Foucault's pendulum, the
gyroscope). In the context of the British and egglgcScottish natural philosophy of the Victorian
era, where geometrical reasoning and mechanicaél®ddd come to be regarded as having a
particularly high epistemological value, RobertHayward formulated the modern definition of
"angular momentum”, which was promptly taken upJaynes C. Maxwell and William J. M.
Rankine and employed by William Thomson to esthldi€onnection between the structure of
matter and its electromagnetic properties. Lateigarded by the classical notion of angular
momentum, Arnold Sommerfeld constructed its egeintin quantum theory, and Otto Stern and
Walther Gerlach established an operational dedinitor it which not only survived the old
guantum theory, but eventually became central emtpum mechanics and quantum field theory.

| believe this picture offers an example of how sibgl-mathematical notions emerge and are
constantly supported by the interactions and uitweddensions between different representations
of phenomena, of mathematical structures and dbgdphical ideas in words, symbols, graphics,
mechanical contrievances or by any other meansikeh@ this multiplicity, the actors making use
of the notions can often find one aspect of the masite which fits the present needs, bridging the
gap between different phenomena to be intrepretedifferent conceptualization of natural laws to
be connected with each other.

139 Stern 1921, p. 250-251.
190 Gerlach and Stern 1921 and 1922.
141 Gerlach and Stern 1922, p. 349.
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