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The construction of angular momentum

In today's physics, angular momentum is the physical quantity which is conserved in

systems invariant under rotations. So generally formulated, this statement is valid

both in classical and in quantum mechanics, yet the notion of angular momentum is

not the same one in both cases. In fact, quantum-theoretical angular momentum is a

most  non-classical  quantity,  encompassing   space  vectors  whose  components  can

never  be  measured  all  at  the  same  time,  as  well  as  spin,  which  expresses  the

relativistic  transformation  properties  of  quantum  fields  and  determines  the

quantum-statistical behaviour of the corresponding particles.  The present research

proposal  does  not  aim  at  discussing  whether  there  is  more  revolution  or  more

continuity  between  classical  and  quantum  angular  momentum,  but  rather  at

reconstructing the slow, multiple-level process of theory transformation connecting

the two. 

In this process, the term “angular momentum” served as a flexible element whose

vague  and,  at  times,  even  self-inconsistent  character  was  usually  not  seen  as

problematic, but rather as a pliable means of experimenting in connecting different

theoretical  approaches  to  each  other  and  to  the  various  forms  of  experimental

evidence.  During  the  development  of  quantum  theories,  various  aspects  of  the

classical notion of angular momentum were individually seized upon and used to

pursue  different  research  aims.  Thus,  “angular  momentum”  could  in  turn  be

conceived in terms of its  classical-mechanical  definition, of its  conservation under

specific conditions,  of the formulas and diagrams expressing spectral series, of the

electromagnetic  relationship  between  magnetic  moment  and  moving  charges,  of

objects like the spinning top or the magnet, and of the highly abstract mathematical

structures of group theory. More often than not, little attention was paid to questions

of coherence between the various aspects. 

The classical-mechanical notion of angular momentum had a century-long tradition

and, although associated with the simple mathematical model of the solar system,

was also known to be at  the origin  of  highly  non-trivial  phenomena such as the

Coriolis  force.  Its  conservation  had  already  been  associated  with  rotational

invariance in the late 18th century, and, by the early 20th century, it had also been

recognized that electromagnetic waves carried not only energy and momentum, but

also angular momentum. 

The “quantum” story may be seen as starting with Niels Bohr, who described his

energy-quantisation condition as a quantisation of the angular momentum, while at

the same time cautioning that this was only an interpretation  "by help of symbols

taken from ordinary mechanics" (Bohr, 1913). Thus, the integers in Balmer’s formula



for  the hydrogen spectrum could  be referred to as quantum numbers  of  angular

momentum.  When  Arnold  Sommerfeld  and  others  generalized  Bohr’s  model  by

introducing more than one quantum number, however, there was no clear reason to

identify one rather  than the other of  them with angular  momentum. Thus,  when

Sommerfeld  interpreted  the  various  terms  of  the  Rydberg-Ritz  spectral  series’

formulas  (s-term,  p-term,  d-term)  as  corresponding  to  values  1,  2  and  3  of  his

“azimuthal  quantum number”, this was not an interpretation in terms of angular

momentum (Sommerfeld, 1916).

The  identification  of  Sommerfeld’s  azimuthal  quantum  number  and  “angular

momentum” was proposed in 1918 by Adalbert Rubinowicz, who suggested that a

quantum equivalent of the classical angular momentum conservation should be seen

as applying to the sum of the azimuthal quantum number of an atom and of the

angular momentum of an emitted electromagnetic wave (Rubinowicz, 1918a, 1918b).

In this context, a relationship between angular momentum and the polarization of

light  was  also  tentatively  suggested.  Rubinowicz  lacked cogent  grounds  both for

identifying  angular  momentum  with  the  azimuthal  quantum  number  and  for

assuming  its  conservation,  but  managed  to  obtain  in  this  way  a  theoretical

explanation for some features of the structure of Zeeman and Stark spectra. In his

“Atombau  und  Spectrallinien”  (1919  and  later  editions),  Sommerfeld  hailed

Rubinowicz’ theory as a badly needed way to bridge the gap between classical and

quantum  theory  and  showed  how  it  confirmed  his  earlier  interpretation  of  the

Rydberg-Ritz  formulas  and  allowed  to  link  it  to  the  conservation  of  angular

momentum.  However,  Sommerfeld  grudgingly  admitted  that  Bohr  (1918)  had

offered a theoretical explanation for the same spectroscopic evidence which fit the

data  better  than  Rubinowicz’s  one.  By  means  of  the  classical-quantum

correspondence,  Bohr’s  model,  too,  could  be  connected  to  the  conservation  of

angular momentum, although in a different way than Rubinowicz’s theory. He, too,

had  established  a  link  between  light  polarization  and  angular  momentum.

Eventually,  the azimuthal  quantum number  came to be  regarded as  representing

some kind of “angular momentum”, even though individual opinions differed as to

the details of this conception. 

The  connection  between  azimuthal  quantum  number  and  angular  momentum

offered  a  physical  basis  to  interpret  Zeeman  spectra  in  terms  of  the  classical

electromagnetic connection between angular momentum and magnetic moment. This

line  of  research  built  upon and expanded the  connections  between a  network of

theory-laden  formalisms  expressing  different  experimental  results:  the  tentative

formulas for spectral series observed under different conditions (in the X-ray region,

in  presence  of  weak  or  strong  magnetic  fields,  or  of  electric  ones);  the  chemical

properties  of  elements  as  represented  in  the  periodic  table  and by  means  of  the

“orbital”  symbols  (s,  p,  d);  the  diverging  interpretations  of  the  Stern-Gerlach

experiments.  From  this  process  emerged  not  one,  but  two  images  of  angular

momentum  whose  mutual  relationship  still  had  to  be  negotiated:  the  “orbital”



angular  momentum and  the  (electron)  spin.  Beside  them stood  also  the  already

mentioned connection between angular momentum and light polarization.

From 1925 onward, mathematics played an increasingly significant role in our story,

as  the  well-known  structures  of  group  theory  were  employed  to  construct  a

framework  within  which,  a  few  years  later,  the  unity  of  the  notion  of  angular

momentum could be recovered.

Starting  point  for  the  new  development  was  the  theory  of  quantum  angular

momentum formulated by Heisenberg, Born and Jordan in the “three-men-paper”

(1925). The three authors used their newly developed formalism to write the matrix

representing in the quantum scheme the physical observable “angular momentum”.

In doing this,  they confirmed in the new theoretical framework the old-quantum-

theoretical  connection  between  the  azimuthal  quantum  number  and  angular

momentum.  In  fact,  Heisenberg,  Born  and  Jordan  had  at  their  disposal  all  the

theoretical tools necessary to support Rubinowicz’s bold assumption of a quantum

conservation of angular momentum, but they did not address the subject – a fact that

might  be  seen  as  evidence  of  the  perceived  gap  between  the  new  theoretical

formalism and the physical notions which it purported to represent.

Whatever  the  reason,  it  was  left  to  Eugene  Wigner,  in  1927-1928,  to  use  group-

theoretical  methods  to  show  how  some  spectral  structures  could  indeed  be

understood  in  terms  of  rotational  invariance  and  conservation  of  angular

momentum. In the following years, Wigner’s approach was extended by a number of

authors,  and  also  coupled  with  new  experimental  evidence,  especially  from

molecular spectra. This to subsume both electron spin and photon polarization under

the  notion  of  rotational  properties:  the  generalized  notion  of  “spin”  as  intrinsic

angular momentum of a relativistic quantum field had emerged. In the course of this

development,  group theory  was enriched of  a  new kind of  representation of  the

Lorenz group: spinors - a fact testifying to how the process of theory transformation

should also be seen as a co-evolution of physics and mathematics. 

How can this brief sketch of the evolution of “angular momentum” be characterized?

It does not seem satisfactory to speak of a transformation of a classical mechanical

notion, since the historical actors seemed engaged rather in deconstructing than in

trying to preserve the traditional idea of angular momentum. At the very least, they

were using it in very unorthodox ways without much regard for consistency. On the

other hand, it would also not be to the point to see the term  “angular momentum” as

a “trading zone” in Peter Galison’s sense, since the transformation process was too

fragmented  to  be  interpreted  as  a  communication  between  different  research

cultures.  I  would  rather  like  to  suggest  that  the  negotiations  around  the  term

“angular  momentum”  might  be  understood along  the  same lines  as  the  gradual

emergence of classical mechanical notions such as “velocity”, “mass” or “force” from

the interaction of a number of different methods for representing and manipulating

experiences, such as numerical and algebraic formulas, drawings, simple objects and



complex  machines,  verbal  statements  and logical  structures.  In  such  a  context,  a

“vague” notion – i.e. a notion to which no firmly-established physical-mathematical

meaning  was  associated  –  could  play  an  epistemologically  very  productive  role,

mediating between rapidly evolving theories and experiments.
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