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Abstract:

In today’s quantum mechanics and quantum fieldrihdbe observable signature of a symmetry is
often sought in the form of a selection rule: agimg radiation frequency, a particle that does not
decay in another one, a scattering process whidh tia take place. The connection between
selection rules and symmetries is effected thankhé mathematical discipline of group theory. In

the present paper, | will offer an overview of htive productive synergy between selection rules
and group theory came to be. The first half ofwloek will be devoted to the emergence of the idea
of spectroscopic selection rules in the contexthefold quantum theory, showing how this notion

was linked with an interpretive scheme of theoedticature which, once combined with group

theory, would bear many fruits. In the second pathe paper, | will focus on the actual encounter
between selection rules and group theory, and enpt#rson largely responsible for it: Eugene
Wigner. | will attempt to reconstruct the path whiled Wigner, of all people, to be the agent

effecting this connection..
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1. Introduction: selection rules and group theaorjoday's physics

In today's quantum mechanics and quantum fieldr{héselection rules" indicate which transitions
between the states of a given quantum system mamgagr not occur as an effect of a specific
perturbation. In atomic and molecular spectroscopy, selectiolesrudetermine which
electromagnetic radiation frequencies may be ethiteabsorbed by a system as it passes from one
energy state to another (Herzberg, 1937, pp. 182-16 quantum field theory, processes of decay
or scattering of elementary particles are concei@edransitions of the quantum field between
"particle states" , and selection rules expresghwtransitions may occur as a result of strong or
electro-weak interactions (Martin et al., 1992, pp1-215).

The existence and the specific patterns of selectiles are usually explained in terms of

1| wish to thank the anonymous referees for thajigestions on how to improve the present paper.
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symmetries: when the unperturbed system and thiarpation are both invariant with respect to a

given transformation, no transition breaking tmsariance may occur (Heine, 1960, pp. 1-12,
Martin et al., 1992, pp. 81-131). For example, if avariance with respect to a mirror
transformation is present, no transition can conhsémtes that are mirror images of each other.
Symmetry arguments of this kind can also be fortedlan terms of conservation laws. In the
previous example, one can say that states whehmémror images of each other have opposite
parity and that, when mirror symmetry holds, pahis to be conserved.

The connection with symmetries allows to formulateact predictions for selection rules
even in those cases where few details are knowntahe dynamics of a system. In such cases,
results can be obtained with the help of group thea branch of mathematics dealing - among
other things - with closed sets of transformati¢ag. all rotations, all mirror inversions) and the
way in which a given set of objects is changedhgnt (Heine, 1960). For example, group theory
allows to classify the energy states of complexenwles and to derive the relevant selection rules
for emission and absorption of radiation (Bunkelke, 1998, pp. 414-473). In quantum field
theory, group theory is an important - and sometiniee only - tool for determining the
characteristic of particles by studying their degagducts (Cheng et al., 1984, pp. 86-124). In
principle, the same results could be obtained hysdirect computations on a case-by-case basis,
but in reality it is hard to imagine how some siiias might be mastered without the apparatus of
group theory.

In this paper, | will offer an overview of how tipeoductive synergy between selection rules
and group theory came to be. The first half of wwek will be devoted to the emergence of the
notion of spectroscopic selection rules in the erhbdbf the old quantum theory. The discussion
aims at showing how the notion of selection rufas,from being a purely empirical, descriptive
tool, was heavily laden with an interpretive schexhtheoretical nature which, once combined with
group theory, would bear many fruits. In the secpad of the paper, | will focus on the actual
moment in which the encounter between selectioesrahd group theory took place, and on the
person largely responsible for it: Eugene Wigneigier's early work in group theory and quantum
mechanics has already been dealt with more tham iongecondary literature (Chayut, 2001, Mehra
et al. 2000, pp. 472-499, Scholz, 2006). Thuss well known that Wigner, when he wrote his
first group theory papers in 1926-1927, had a grabpthat discipline much smaller than
mathematicians like Hermann Weyl or John von Neumadn fact, in 1926 Weyl was already
reflecting on how to employ group theory to betiederstand the new quantum mechanics (Scholz,
2006, pp. 461-469). However, it was Wigner who camedhe idea of using it for explaining

spectroscopic selection rules, while Weyl's reftett took a different - albeit equally productive -
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direction. In my analysis, | will attempt to rectmst the path which led Wigner, of all people, to

be the agent effecting the connection between ts@texules and group theory.

2. Bohr's frequency condition (1913)

The generalized notion of "selection rules" ("AubWegeln™) as we know it today was already
common in 1926-1927, as shown for example in FeadHund's manual of spectroscopy (Hund,
1927, pp. 17-19, p. 27, p. 60). An exhaustive tnegit of the emergence of this notion would
require sifting through and discussing a much beoadnge of sources than is possible in the
context of the present paper, and my analysis dfellimited to published papers of the main
contributors to the historical development. Nonktb®, | believe that even such a rough sketch of
the subject is worth offering since, until now, thigcal discussion of the old quantum theory has
mainly focused on the development of atomic stma;t@nd on the interpretation of specific
spectroscopic evidence, such as X-ray spectraeoZéeman effect (Forman, 1968, 1970, Heilbron,
1964, 1967). With the partial exception of Forman(1970) study of Alfred Landé's work on
Zeeman spectra, no one has addressed the ques$tishea historical actors started regarding
spectroscopic data as providing experimental evieén the form of "missing” lines. The starting
point of my discussion will be Niels Bohr's trippgf 1913. Even though in this work no notion of
selection rules appeared, it contained the two &kyments of the scheme discussed in the
introduction: quantum states and transitions betwd#em. | will discuss Bohr's paper with
particular attention to his attempt at interpretthg empirical formulas for atomic spectra which
were known in his time.

Bohr (1913) put forward the innovative notion thédms could exist in special "stationary
states" of given energy in which they did not réeliaeven though the laws of classical
electrodynamics would have required them to dé Radiation only occurred in conjunction with

a transition of the atom from one energy lewth Y to another\(\,). As suggested by the discrete

structure of atomic spectra, only a discrete seerdrgy values were possible. Bohr combined
classical mechanics with a quantization conditiomolving Planck's quantum of actidn and
proposed an expression for the energy levels ohtladeogen atom which depended on an integer

"quantum number?:

2 Beside primary sources, as a basis for my overde the development of the old quantum theoryavehused

Heilbron, 1964, Hund, 1984, pp. 68-72, Jammer, 196663-156, Mehra et al., 1982, pp. 155-257.
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W_ = (2r°mei(h?t?) (Bohr, 1913a, p.8),

wherem ande were the mass and charge of the electron. To deterthe radiation frequenay

associated to a transition from enei\l‘,‘yyl to energyW,2 , Bohr introduced a further hypothesis,

which was later referred to as "Bohr's frequermydition™:
sz' er = hv (Bohr, 1913a, p. 8).

Using this condition together with his expressidrin@ energy levels of the hydrogen atom, Bohr
could recover the empirical formula describing $pectrum of that element:

v = (2?me*In3 (L) - 1/(x)?) (Bohr, 1913a, pp. 8-9).

Bohr's model also accounted for the general strectdi atomic spectra as expressed by Ritz's
"combination principle” (Hund, 1927, pp. 1-5, Huid®84, pp. 62-64). According to this principle,

which had been developed by Walther Ritz on theskbafsformulas by Johannes Robert Rydberg,
the radiation frequencies characteristic of eadmeht could be expressed as the difference

between two "terms", each of which depended omtgerz;:
v = F(19) - F{(tp) (Bohr, 1913a, p.11).

In a first approximation, all functions had the same form, but differed in the values oheo
constants appearing in them. By keeping the indeaf the first function fixed and lettingy run

through its possible values, one could obtain wgbod approximation the frequencies
corresponding to various observed spectroscopiessérhe main series were usually referredgo
“sharp”, “principal”, “diffuse” and “fundamental”’ mes, and the corresponding functions were
therefore traditionally labeled with the lettex, d, f (Fg(2), Fp(r), ...) . These labels would later

on come to represent different values of atomiaurxgnomentum, but, at this stage, there was no
suggestion of such a connection. Bohr's new resuisisted in the fact that his model could explain
the combination principle by interpreting each fiimrc F as representing the energy of a stationary
state characterized by a quantum numbeWithin the limits of contemporary spectroscopi,
values ofr seemed to generate a spectral term, so no quedtiomssing lines" arose. This would

only happen when additional quantum numbers wereduoced.
3. Sommerfeld's quantum inequalities (1915-1916)

The most successful extension of Bohr's atomicriheas due to Arnold Sommerfeld. Sommerfeld

presented his results in 1915 at B&yerische Akademie der Wissenschaften,| will refer to

Unless otherwise stated, formulas are quoteldrekact form in which they appear in the origs@irces.
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them in the more elaborate form in which they waublished in 1916 (Sommerfeld, 1916a). In

Sommerfeld's theory, the stationary states of §ydrdgen atom were defined not by one, but by
three quantum conditions, each giving rise to antjura number. In absence of external fields, only
two of these quantum numbers were relevant forraotéeng the energy value: the "azimuthal
guantum number'h, corresponding to the angular motion of the etectalong its (circular or
elliptical) orbit, and the "radial quantum numbex; corresponding to variations of the distance
between the electron and the nucleus (Sommerfeligd, pp. 5-20, 28-33).

The azimuthal quantum number is of particularrede for our discussion, because it will
come to be regarded as the quantum equivalenasesichl angular momentum. By assuming the
validity of Bohr's frequency condition, Sommerfaldowed that the two quantum numbe=ndn’
could be used to explain both the fine structuréyafrogen lines and the complex structure of the
spectra as described by the Rydberg-Ritz form@ammerfeld, 1916a, pp. 68-80). However, if all
possible combinations of the two new quantum nuskere taken into account, one would have
obtained many more spectral lines than were agtod$erved. Without explicitly mentioning this
problem, Sommerfeld proposed additional quantunditmns forn andn’ which could help solve
it: he postulated that a quantum transitiom m') — (n, n') could only occur if both quantum
numbers did not increase, and expressed this @omdiin two "quantum inequalities”
("Quantenungleichungen"):
m>nandm'>n' (Sommerfeld, 1916a, pp. 23-24).

Sommerfeld's inequalities cannot be regarded gsreal selection rules, since they had
rather a theoretical justification than an expentaé one. In fact, Sommerfeld immediately
anticipated that comparison with spectroscopic a&tald show that the second inequality was
valid without exception ("ausnahmslos"), while thist one was only "roughly correct” ("im groben
richtig") (Sommerfeld, 1916a, p. 24). Thus, therquan inequalities were assumed relevant despite
their lack of general empirical validity: they werngart of a complex theory, albeit a still sketchy
one, and not just rules describing the structurespéctral lines. After the comparison with

experiment, Sommerfeld concluded:

The origin of Rydberg's complete line system remabscure for us, as well as the
spectra of all non-hydrogen-like elements; howewers in all probability based on

some kind of quantum inequality.

* "Der Ursprung der Rydbergschen vollstandigen Lisysteme ist uns zwar, wie die Spektren der

wasserstoffundhnlichen Elemente (berhaupt, dunlel; beruht aber héchswahrscheinlich auf einer Art
Quantenungleichung" (Sommerfeld, 1916a, p. 80).
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Here, the quantum inequalities seemed to havedne status as the quantization conditions. One

reason why, in 1916, Sommerfeld saw no need ferpnéting all spectra in terms of energy levels
and selection rules, was that, as noted by Heill{i®67, p. 469), he still had doubts about the

general validity of Bohr's frequency condition.

| believe that this use of quantum theory, Bohrisgfiency condition, despite its
extraordinary effectiveness with respect to the lsoation principle of spectral lines, is

indeed still preliminary.

According to Sommerfeld, the frequency conditioitefhin the case of the Stark effect (radiation in
electric fields) and especially for X-ray spectraaking the combination principle inapplicable
(Heilbron, 1967, pp. 468-470, Sommerfeld, 1916al4. p. 33, 1916b, p. 161). Similar doubts
were expressed at this time also by Peter Debyeby® 1916). Debye applied the new quantum
theory to the Zeeman effect (radiation in magnéedd) using three quantum numbers, and
managed to explain the normal Zeeman effect by simgoad hoc conditions on a quantum

number. However, he did not think of "selectioregi| but instead concluded:

It seems that, here, real progress can only bangatdby finding a detailed substitute
for Bohr's second principlev = energy difference. This is anyway already themm

unsolved problem in this field.

Sommerfeld's quantum inequalities were not selectides, but represented a first step in the
emergence of that notion. Paul Sophus Epsteinegp@ommerfeld’'s approach to the theory of the
Stark effect (Epstein, 1916). He, too, introdutlecce quantum numbers - albeit different from

Sommerfeld's - and imposed for a transitigr— n; the quantum inequalities:

N<M =Ny Ng=my,

which he described as providing a "selection ppiet ("Auswahlprinzip") (Epstein, 1916, p. 148,
p. 150). This is the earliest occurrence of thetéselection” ("Auswahl) that | have run across i
spectroscopic context and, as we shall see, theegsipn "selection rules” can indeed be traced

back to it. However, the word " principle" undeosses the theoretical character of the notion.

"Ich glaube, dal} diese Verwendung der Quantenthealie Bohrsche Frequenzbedingung, trotz ihrer
aul3erordentlichen Leistungsfahigkeit in Hinsichtf alas Kombinationsprinzip der Spektrallinien, dookr
provisorisch ist" (Sommerfeld, 1916a, p. 14).

"Es scheint, dal3 ein wesentlicher Fortschritt higrzu erreichen ist, indem man fir den zweitehrBohen Ansatz
hv = Energiedifferenz eine detaillierten Ersatz stibistt, was ja sowieso auf diesem Gebiete als edrand
ungeltdste Aufgabe an der Spitze steht" (Debye, 191511).
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Later in 1916, Sommerfeld successfully associaedalue of the azimuthal quantum

number to each of the functionsdppearing in the Rydberg-Ritz combination formula

v=F(tq) - F{t9) .

In this way, the labels traditionally indicatingettvarious spectral series, @, d, f) came to be
associated with the values of the azimuthal quamumber and, later on, with those of (orbital)
angular momentum (Sommerfeld, 1916c¢, pp. 152-186)merfeld's main focus in this work was
the theoretical derivation of the structure of #ectral terms (i.e. the functions F) and, as $ar a
possible, of the numerical values of the variousistants appearing in them. Spectroscopic
evidence also showed that not all functions combimigh all others, and one might have expressed
this fact by saying that the azimuthal quantum nairslassigned by Sommerfeld could only change
by one unit. Yet, in this paper, Sommerfeld did eeen mention “missing lines”, let alone
formalize them in terms of selection rules.

In conclusion, we can say that, in 1916, Bohiterpretation of spectral lines was accepted
for those cases in which it fitted experimentaldewvice, but was not generally regarded as a valid
scheme for interpreting all observed spectra. lramalogous way, there was no cogent reason to
believe that, given any two stationary states,exsgl line corresponding to the transition between
them was to be expected, and should be declaressifigl’ if it failed to appear. Moreover, the
empirical formulas through which theorists dealthwspectroscopic evidence could not necessarily
be seen as saying something about lines that warehserved. It was only later on that the non-
combination of spectroscopic terms attracted ttenfion of theorists as a possible testing ground

for theoretically-based "selection principles”.

4. Selection principles, conservation laws and sgtnyarguments in the work of Bohr and
Rubinowicz (1918)

Between 1916 and 1918, physicist worked both gaeding the Bohr-Sommerfeld model and on
improving experiments on spectral frequencies nsitees and polarizations. Despite the efforts of
the theoreticians, no viable alternative was foundBohr's frequency condition. In 1917,

Sommerfeld seemed to have set aside his doubtg @bsowalidity, and instead focused on the
theoretical determination of radiation intensit{®@mmerfeld, 1917). In this context, he explicitly
addressed the question of the possible theoresigalificance of "missing lines" ("ausfallende

Linien", Sommerfeld, 1917, pp. 95-100, pp. 106-109%wever, he did not describe the missing
lines in terms of selection rules, but rather deped further his theory of quantum inequalitieg] an

followed Epstein in calling them a "selection pipie" (Sommerfeld, 1917, p. 109).
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In 1918, two authors proposed, independently feach other, two theoretical mechanisms

capable of accounting for (some) missing linesel®NBohr and Woijciech (Adalbert) Rubinowicz,
a Polish physicist who had been working in Municham assistant to Sommerfeld in the years
1917-1918 (Bohr, 1918a, 1918b , Rubinowicz, 19184.8b). | will expound Rubinowicz's work
first, as it is particularly relevant for our story

The starting point of Rubinowicz' papers on "Bshftequency conditions and the
conservation of angular momentum" ("Bohrsche Fraghedingungen und Erhaltung des
Impulsmoments"), part | and IlI, were the two kegwmptions of the Bohr-Sommerfeld model: the
existence of a discrete set of stationary statdsBanr's frequency conditions (Rubinowicz, 1918a,
p. 441). From these premises, Rubinowicz derivedthaoretical "selection principle”
("Auswahlprinzip”) which he characterized as a "ea@xact version" ("exaktere Fassung") of
Sommerfeld's quantum inequalities (Rubinowicz, 918 441, 1918b, p. 466, p. 473). The new
ingredient that allowed him to obtain this resuétsthe assumption that the law of conservation of
angular momentum would be valid for the system PAte the electromagnetic field emitted by an
electron transition" (“Atom + das beim Elektroneriiange ausgestrahlte elektromagnetische
Feld” Rubinowicz, 1918a, p. 441). This conservatem was valid in classical electrodynamics and
Rubinowicz hoped that it would lead to positiveulesalso in the quantum case. In his reflections,
he took it as a "fact" ("Tatsache") that Sommdieazimuthal quantum number when
multiplied by the constart/2z, represented the physical quantity "angular momehufran atom
(Rubinowicz, 1918a, p. 441). This was a premisectvimot everyone at that time would have been
ready to share, even though it was quite commapeak of the quantization of angular momentum
in units h/2r, an analogy which Bohr himself had suggested rasneerpretation "by help of
symbols taken from ordinary mechanics” (Bohr, 19384l5,). Rubinowicz did not state explicitly
why angular momentum would be conserved and, smcéad no mathematical model for the
atom-radiation interaction, his assumption wasessarily based only on a qualitative physical
reasoning. This, in turn, could only find an imglipistification in the spherical symmetry of the
system which, in the classical case, would havedezhgular momentum conservatiotiowever,
Rubinowicz did not address this question, but syjngslsumed angular momentum conservation.

Using classical electromagnetism, Rubinowicz comguthe angular momentum of a
spherical wave and showed that, when renormaligdd2x, it had an absolute value equal or less
than one. (Rubinowicz, 1918a, pp. 443-444). This tle a selection principle for the azimuthal
quantum number4n = 0, £l (Rubinowicz, 1918a, pp. 444-445). In testing hisultesgainst

" The relationship between symmetries and conservdaws was proven in its most general form bynBm

Noether only in 1918, but was already known sifegrevious century for specific cases like angmlamentum
(Kastrup, 1987).
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experimental evidence, Rubinowicz did not cite Sarfeld's (1916c) paper connecting the

spectroscopic terms of the Rydberg-Ritz formuladiiferent values of the azimuthal quantum
number, but rather followed the reasoning of Sonfiee(1917), concluding that his own selection
principle fared at least as well as Sommerfeldantum inequalities, and that it could also explain
some features of Zeeman and Stark spectra (Rulbeapu®18b, pp. 472-473). Like quantization
conditions and quantum inequalities, RubinowisEkction principle was primarily a theoretical
notion.
Let us now go on to Bohr's paper, in which he oagain employed his idea of a

correspondence between classical and quantum theenyrote:

In a stationary state of a periodic system, thpldcement of the particles in any given

direction may always be expressed as a Fouriegssefiharmonic vibrations:

£ =X C; cos Z (tot+cy) (Bohr, 1918a, p. 15)

Here,§ was the displacemerttthe time,o the frequency of the classical oscillator (notrdiation
frequency) andt an integer number. In classical electrodynamibss situation would have led to
the emission of radiation in all the harmonies, with the intensity of each depending on its

coefficient G (Bohr, 1918a, p. 15). For example, a harmonidlletar only presented, and

therefore radiated, the term witkl. In a quantum system, so Bohr's theory, the intgrdi the
radiation emitted in a transition with a changejoantum numbetin = z was proportional to the

coefficient G of the «-th Fourier component of the expansion. Since the amgulotion of an

electron along its orbit was equivalent to thahdfarmonic oscillator, the classical expansiorhef t
displacement with respect to the relevant angutardinate only had then=1 term, and the
azimuthal quantum number could therefore only ceamg/n = +1 (Bohr, 1918a, p. 16, pp. 67-
68)3

Bohr compared this result with the fine structafehydrogen-like spectra, but did not
mention Sommerfeld's interpretation of the RydbRig- combination formula in terms of the
azimuthal quantum number (Bohr, 1918b, p. 67).d$wnly in the third part of his study, published
in 1922, that he discussed Sommerfeld's classdicaand noted the fact that, thanks to it, his own
result was shown to be in perfect agreement wigeement (Bohr, 1922, pp. 103-104). This seems
to suggest that, in deriving his theory, Bohr hadspecific experimental evidence in mind which
should be explained.

It was left to Sommerfeld, in the first edition Atombau und Spektralliniefi919), to

8 The two motions were shown to be equivalent biyguthe adiabatic hypothesis, or "mechanical tramsébility",
as Bohr preferred to call it"(Bohr, 1918a, p. 8).
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connect Bohr and Rubinowicz's results to his owerpretation of spectral terms as linked to

azimuthal quantum numbers. Sommerfeld showed g elear preference for the theory of his
former assistant Rubinowicz, which he discussedemgth (Sommerfeld, 1919, pp. 390-411).
Rubinowicz's "selection principle” was for Sommé&tfe a means to bridge the gap between
classical and quantum physics: Bohr's frequencglition expressed the conservation of energy in
a radiation process and thus, "with the same ,iglet shall now require the conservation of
momentum and angular momentum” ("mit demselben Reeinden wir jetzt die Erhaltung des
Impulses und des Impulsmomentes fordern”, Somntgri€19, p. 381). Sommerfeld expounded
Rubinowicz's theory and, at the end of his disarssi briefly mentioned Bohr's result
(Sommerfeld, 1919, pp. 401-403). He admitted thatr® condition4n = £1 fitted much better
the Rydberg-Ritz formula than Rubinowicz's, butdealear the epistemological gap he perceived
between a theoretically significant selection ppielike Rubinowicz's, on the one side, and Bohr's
empirically successful condition, on the other. Tlagter, he described as a "magic wand"
("Zauberstab™) to make quantum theory useful irciica (Sommerfeld, 1919, pp. 406-411, quote
from p. 402).

5. From selection principles to selection rulesl@3924)

As shown in the previous pages, the aim of themktphysicists like Bohr, Rubinowicz and
Sommerfeld in formulating their selection princplaad not been primarily to explain spectral
structures, but rather to refine their own theorresuch a way, as to better understand the inner
structure of the atom. It was as a continuatiothaf program with other means, that those same
theoretical physicists eventually came to endor$atwForman (1970) called aa posteriori
approach: trying to formulate the empirical evicerof the spectra in the theoretical terms of
"quantum numbers" and "selection principles”, amentusing the resulting pattern as a starting
point for new theoretical analyses (Forman, 19701.886). In doing so, they combined their own
theoretical agendas with an approach that specipests had been successfully applying since the
previous century: attempting to combine the freqiesn of different spectral lines of the same
system with the aim of uncovering regular patterns.

Combining spectral lines to obtain other spedingls may sound very similar to combining
spectral lines into energy levels, but in the e&f20's it was not so. In his study of Landé's path
the interpretation of the anomalous Zeeman effemtman (1970) has given a masterful analysis of
how difficult it was for the historical actors, L@ in particular, to approach the interpretation of

spectra in what weoday regard as the most obvious way: decomposinl spectral line into the
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difference of energies specified by certain quantwmbers. According to Forman, it was

Sommerfeld who took the decisive step of abandomingriori attempts at predicting spectra
primarily on the basis of theoretical consideragioand opting instead for tlaeposterioriapproach

of letting empirical evidence guide both the assignt of quantum numbers and the determination
of the corresponding selection principles (Fornt3v,0, pp. 186-187). In his study of the Zeeman

effect, Sommerfeld wrote:

A general remark which does not say anything newpectroscopists must be kept in
mind in the following pages: the aim of spectrosc@onot so much the knowledge of
lines (energy differences), but rather the knowéedsf terms (the energy level
themselves), in which the frequencies of the lioas be decomposed according to the

combination principlé.

Thus, the "combination principle” which Ritz hadrfalated for spectral lines had now come to
refer to energy levels. Sommerfeld also claimeat the notion that the combination principle
could apply to Zeeman spectra had only been ettplformulated a few months earlier (Forman,
1970, p. 186, Sommerfeld, 1920, pp. 240-241). Megeohe assumed that the combinations were
subject to "some sort of selection principle" (&irt Auswahlprinzip") like Rubinowicz's, which
acted on a new, "hidden" ("verborgen") quantum nem{Bommerfeld, 1920, pp. 230-231).
However, Sommerfeld did not try to extract from exmental evidence the features of this new
selection principle, and instead simply extendedbiRowicz's principle to the hidden quantum
number (Forman, 1970, pp. 190-194, Sommerfeld, 192@31). Thus, despite the good premises,
no new, empirically-based selection rules made #ygoearance in this paper.

With time, the exchange between atomic theory spectroscopy became increasingly
close. In a lecture held in Berlin in 1920, Bohpnesented the theoretical energy levels of sodium
in a diagram, and connected with lines those leletsveen which transitions could occur (Bohr,
1920). He then used his theory to explain why stnaesitions were forbidden. Later in the same
year, Walter Grotrian used Bohr's diagrammatic wetio represent new spectroscopic data on the
element neon: using the Rydberg-Ritz formula, hHerpreted each line as the difference of two
energy levels, plotted the levels as Bohr had dand, noted the regularities in the way in which

they did or did not combine with each other inpecral lines (Grotrian, 1920).

"Eine allgemeine Bemerkung, welche dem spektroskhpis Fachmanne nichts Neues sagt, ist fur allegrfiole
im Auge zu behalten: Das Ziel der Spektroskopienisht so sehr die Kenntniss der Linien (Energiedénzen),
sondern die Kenntnis der Terme (der Energiestuédiysy, in die sich die Schwingungszahlen der ltimach dem
Kombinationsprinzip zerlegen lassen" (Sommerfe82Q, p. 222).



12
This approach would eventually lead to Landé'srpretation of the anomalous Zeeman

spectra. However, Forman (1970) has shown howcdlffiit was for Landé, when trying to
implement Sommerfeld's posteriori approach, to refrain from combining spectral lirat
spectral lines, and to focus only on (hypothetieagrgy levels (Forman, 1970, pp. 195-207, pp.
221-231). The result of his efforts was an enexheme involving three quantum numbers, which
he referred to as azimuthal quantum numiédlater: I), inner quantum numbek (later: j) and
magnetic quantum numben (Landé, 1921, p. 241). For each quantum numberddreved
"selection rules" ("Auswahlregeln”, Landé, 1921,. @23-324) which, depending on the
circumstances, corresponded to the "selection ipteicof Rubinowicz or Bohr (Landé, 1921, pp.
231-232). Thus, in his 1921 paper, Landé used nigttbe term "selection rules”, but also a notion
which largely corresponded to the one whose emergare are investigating, even though Landé
still underscored the connection of his selectinnies” to the theoretical selection "principles" of
Rubinowicz and Bohr.

From the dialogue between theory and experimerpwaerful heuristic tool had emerged
and, from then onward, it would be extensively ugedhake sense of old and new spectroscopic
material in optical and X-ray range, both in altgeand in presence of external fields (Hund, 1927,
p. 17, pp. 26-27, p. 60, Hund, 1984, pp. 97-101,144-124)). In this process, selection principles
eventually came to be regarded as one of the mamgirieal "rules" and formulas which

spectroscopists had been developing since thaila¢eenth century.

6. Selection rules in the new quantum mechanic231D26)

In 1925, the new quantum mechanics began to enagrgjeby 1926, some - but not all - selection
rules had found a justification in the new formaididn the present paper, it is not possible fortone
discuss these developments in detail and | willitimyself to stating those results which are
relevant for our story.

In the matrix mechanics of Werner Heisenberg, Baxn and Pascual Jordan, observable
guantities like positiomgq and momentunp were associated with infinite-dimensional matrices
whose rows and columns were labeled by the quamumbers of the stationary states of the
system (Born et al., 1925, Born et al., 1926, Hégeg, 1925). Ifj was a cartesian coordinate of
the electron in an atom, then the square modulubeoimatrix elementg(n, n') was regarded as
representing the probability of the radiative tifaos n — n' (Born et al., 1925, pp. 866-867, Born
et al.,, 1926, pp. 578-579, Heisenberg, 1925, p.).886Be three authors derived the operator

associated with angular momentum, showing that as wuantized to integer or half-integer
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multiples j of h/2r and that, in radiation processes, it obeyed thde¢gsen principle”

("Auswahlprinzip™)4j = 0, £1 (Born et al., 1926, pp. 595-605, quote from p. &A@ p. 602). With
the advent of Erwin Schrodinger's quantum mechanid®926, the stationary states of atoms and
molecules came to be associated with a wave fumafi(x) solving Schrédinger's equation
(Jammer, 1966, pp. 255-280). Using perturbationrheSchrodinger showed how the formula for
radiation intensities of matrix mechanics couldumelerstood in wave mechanics as based on the
electric dipole of the atom (Schrédinger, 1926, {§b-756).

Selection rules had found a place in the new gumannechanics, but did not seem to be
receiving much attention from theoretical physgidh 1925, Heisenberg, Born and Jordan had
showed that matrix mechanics provided a quantumvalgnt of the classical conservation of
angular momentum, but they had not attempted toednthe relevant selection rules to physical
conservation arguments (Born et al., 1926, p. 58@)ther had there been any attempt to derive
selection rules from symmetry arguments before ghblication of Wigner's group-theoretical
work. In early 1926, symmetry considerations emtéhe new quantum mechanics only as far as a
very special kind of symmetry was concerned: thaiiance of quantum systems with respect to
the permutation of identical particles. Since itswy this path that Wigner eventually came to his
result, | will briefly state the problem, beforeftihg the focus to Wigner's work.

In the early 1920's, the interpretation of thect@eof the various elements in terms of
guantum numbers and selection rules had alloweddtheslopment of increasingly elaborate
theories of inner atomic structure (Hund, 1984, pp4-113). On this basis, Wolfgang Pauli
formulated his exclusion principle, according toievhno two electrons within the same atom could
be in the same state. One year later, Werner Hmesgnand Paul Dirac contemporarily but
independently showed that Pauli's exclusion priecipas a consequence of the invariance of
atomic states with respect to permutations af dectrons (Dirac, 1926 pp. 666-670, Heisenberg,
1926).

The new symmetry was formally expressed by reggithat the wave function of a many-
electron system should be either symmetric osgmimetric under permutation of the labels of the
electrons. Heisenberg and Dirac argued that nsittans between symmetric and antisymmetric
wave function could ever occur, and that in natomégy antisymmetric functions were realized,
giving rise to Pauli's exclusion principle. Heisendp also showed how permutation symmetry
explained the structure of the helium spectrum and,later paper, attempted to provide a rigorous
proof of the non-combination principle for statdsddferent symmetry in the case of a generic
number of electrons (Heisenberg, 1927). AccordimgStholz, though, his argumentation was
flawed (Scholz, 2006, pp. 443-447). Interestingdsris the fact that, although he had worked at
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developing selection rules for various kinds of dalar momentum" quantum numbers,

Heisenberg did not come to the idea that, besidmytation symmetry, rotation symmetry, too,
might be of help in explaining spectral structurébis connection was established by Wigner, to

whose early career we now turn.
7. Wigner's experience with the group theory g&tallographers (1923-1925)

Eugene Paul (JénPal) Wigner was born in 1902 in Budapest fromumgarian Jewish family.
Like his childhood friend John von Neumann, he s&st to study in Berlin and, between 1921 and
1925, he earned a diploma and a PhD in chemicaheagng at the Technical University.During

his study, he worked under the supervision of MétHaolanyi in the laboratories of the newly-
founded Kaiser Wilhelm Institute for Fiber Matesawhere he also collaborated with Hermann
Mark. In 1925, after receiving his PhD, Wigner ¢olled the wishes of his family and went back to
Hungary to work as a chemical engineer in a leatheory. In 1926, though, he received an offer
to come back to Berlin as an assistant to Karl ¥é&iberg, a mathematician and crystallographer
who had been collaborating with Mark and Polanyiha&t Fiber Material Institute since the early
1920's (Polanyi, 1962, Wigner, 1992, pp. 101-143).

Wigner gladly accepted the opportunity offerechim, and in 1926 he was back in Berlin,
working as an assistant to Weissenberg. At the,tivieissenberg had already made a decisive
contribution to X-ray crystallography in the forrh @ new method of structure determination, and
had also published a series of theoretical artidgeloping a theory of crystalline solids in which
symmetries and group theory played a central Ble(ger, 1990, p. 112, Weissenberg, 1925a-e).

At this point, it is important to raise a questiavhat was "group theory" in Wigner's time?
As has been masterfully shown by Scholz (1989)hénfirst decades of the twentieth century, the
group theory of the crystallographers was differfeoin that of the mathematicians. It was not a
case of the one being less advanced than the thiegrwere two different mathematical tools to be
employed for different aims. The theory of symmegrpups had been one of the main tools for
theoretical crystallographers since the ninetearghtury (Scholz, 1989, pp. 110-153). Shortly
before 1900, Evgraph Stephanb¥edorov and Arthur Schoenflies had independesitiyved a
complete classification of all possible symmetiésa crystal lattice - i.e. of a three-dimensional,

discrete, space-filling, periodical structure - gmcalled 230 "space groups” (Scholz, 1989, pp.

19 The most detailed discussion of this stage of n&iip career is: (Chayut, 2001). On Wigner's lde §Hargittai,
2006, Wigner, 1992). | wish to thank Prof. Bretiskriedrich for many fruitful discussions on Wigitseearly work.
On Weissenberg's life and research, see the sumamar references in Chayut (2001). | am deeply bretk to
Prof. H. Gutfreund for leading me to appreciate #ignificance of Weissenberg's theoretical work.

11
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114-148). At the beginning of the twentieth centurthough, the group theory of

crystallographers and that of mathematicians esfadtifting apart, as mathematicians focused on
more abstract aspects, such as how to extend yistakbographic classification to lattices of
dimensions (Scholz, 1989, pp. 150-153, Wussing,91%%. 182-183). Crystallographers were
instead primarily interested in physically relevasymmetries of three-dimensional, discrete,
periodical structures. In 1912, experiments by tane had shown that X-rays passing through
crystals produced regular, geometrical diffractp@atterns and, since then, physicists had developed
increasingly refined methods to extract from thpatterns information about the inner structure of
crystal solids (Ewald, 1962). This subject is oftjgalar interest to us, because Wigner's earliest
research was in X-ray crystallography, one of thennfield of activities of Polanyi, Mark and
Weissenberg at the Kaiser Wilhelm Institute fordfiMaterials.

Chayut (2001) has already noted that the oridgiWagner's innovative style in joining
guantum mechanics and group theory may be soudfis iwork in a "peripheral” area of science,
namely chemistry and crystallography. While ackremlging the role played by crystallography,
and especially by Weissenberg, in shaping Wigmeesearch interests, Chayut saw only a generic
framework alerting Wigner to the power of symmetgd of group theory, and remarked:
"Wigner's work is very different from Weissenbergketchy theory” (Chayut, 2001, p. 68). In the
following pages, | will argue that, contrary to @h#s claim, there are a number of specific feaure
which connect the use of group theory in crystaliphy to its employment to explain
spectroscopic data. Moreover, | will try to shovattWeissenberg's theory of crystalline matter,
while relying on the group theory of the crystatimghers and not on the latest innovations of the
mathematicians, yet focused on the kind of symmatguments which would be relevant for
Wigner's work. In my discussion, | do not aim abying any "influences”, but only wish to
contribute to making plausible why it was Wignemdanot for example Hermann Weyl, who first
asked whether group theory might help explain tspscopic selection rules. | will first shortly
discuss the role of group theory in X-ray crystgtiphy and then, in the next section, | will focus
on Weissenberg's theory of crystalline matter.

To earn his diploma in chemical engineering, Wignad studied the structure of rhombic
sulfur with X-ray diffraction under the supervisiohHermann Mark (Mark/Wigner, 1924, Wigner,
1992, pp. 80-81). When extracting information abdig inner structure of a crystal from its X-ray
diffraction patterns, a key step is determiningvtach of the 230 space groups the crystal belongs
(Ewald (1962), pp. 102-116). As P.P. Ewald expldjn&his [...] does not require a quantitative
discussion of intensities [in the diffraction pate but only the observation of certain zero

intensities occurring systematically, ttebsences’ (Ewald, 1962, p.107) Thus, inner symmetry
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became visible in form of an "absence" ("Auslosdiyin of radiation, and this method was

employed also by Wigner and Mark in their work tmmbic sulphur (Mark/Wigner, 1924, 410-
411). More in general, X-ray crystallography wasdxd on the notion that the group-theoretical
properties of crystal lattices determined the istignpatterns of diffracted X-ray radiation. By
1928, the laws governing the structure of thesdéepet were referred to as "selection rules"
("Auswahlregeln™), although this was a differentian from the one which we had earlier emerged
in spectroscopy. (Brandenberger et al., 1928, éalhep. 303). A further contact point between the
use of group theory in crystallography and itsrl@&employment in quantum spectroscopy was the
focus on linear transformation of discrete setbjects. Finally, mirror inversions, which are
hardly relevant in classical mechanics, play a vergortant role both in crystallography and in
guantum theory. As we shall see presently, thé ding to note their relevance for quantum system

was Wigner.

8. Group theory in Karl Weissenberg's researchrarag

The story of how Wigner learned about group thdmryrying to solve problems posed to him by

Weissenberg has often been told: Weissenberg ass\figner problems in group theory, to solve

which Wigner, with the help of von Neumann, learrmad applied the newest result of the

mathematicians (Chayut, 2001, pp. 57-58, pp. 685¢Bplz, 2006, p. 447, Wigner, 1992, pp. 104-
106). According to Wigner, Weissenberg did notlgeahderstand these abstract solutions, but this
is not what interests us here. | will instead wyfitl in some background to this story as far as

Weissenberg's theory of matter structure is comzkrbecause | wish to make some light on the
kind of problems which Weissenberg asked Wigneoloe.

Chayut's (2001) judgment that Weissenberg's the@y "sketchy” is based on the general
introductory remarks made by Weissenberg in the Viest paper he published on the subject
(Chayut, 2001, p. 67; Weissenberg, 1925a, pp. 499-4n those pages, the author expounded his
idea that the formal transformation properties bf/gical objects with respect to a change of
system of reference provided information on thegutgl behavior of the system. As noted by
Chayut, this approach is similar to Wigner's latsearch program, but too vague to be regarded as
a significant element in shaping his physical-matagcal techniques. The gist of Weissenberg's
theory, though, is a proposal for a classificatmin crystalline structures which Weissenberg

regarded as physically highly significant additi{¢éAusatz”) to the 230 space groups (Weissenberg,
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1925a-e, quote from Weissenberg, 1925d, p. 14). wifess to the non-triviality of

Weissenberg's work was the expert in crystallogagioup theory Schoenflies who, in 1926,

wrote a report "On the most recent crystallographicks of K. Weissenberg”, with the aim of

improving the reception of what he considered amnpsog theory by expounding it in a more

accessible terms (Schoenflies, 1926). The key noitio Weissenberg's classification of crystal
structures was that of an "island" ("Insel”), latalled a "particle group" ("Partikelgruppe”)

(Weissenberg, 1925c, p. 433, Weissenberg, 1925&7p. Weissenberg's island was a set of
particles in a crystal structure which possessed fthlowing property: when the crystal was

subjected to a transformation which left it invatias a whole (i.e. a transformation belonging to
some subgroup of the crystal's space group), #idrer the particles of the island transformed into
each other, or the whole island was transformealanother, equivalent, island.

Purely on the basis of symmetry considerationsisgémberg was able to show that islands
displayed a very important physical property: epaltticle in an island was always more strongly
bound to the other particles in the same island thaany other particle in the crystal (Schoenflies
1926, pp. 217-219, Weissenberg, 1925c, pp. 445-AARjssenberg, 1925e, pp. 95-96).
Weissenberg believed that a classification of afystructures according to different kinds of
islands would be more effective for physical andrafcal research than the 230 space groups, and
claimed to have given such a complete systematieig¥énberg, 1926e, p. 102). According to
Schoenflies’ summary, the task Weissenberg hakireself amounted to providing an overview of
all subgroups of each of the 230 space groups Eles, 1926, p. 206). At that time, the theory
of subgroups of space groups was not well develogadi its beginning is usually associated with a
paper published in 1929 by Carl Hermann (Aroyo let 2006, p. 3, Hermann, 1929, Senechal,
1990, p. 51). In that paper, Hermann referred tas¥émberg's work as the most recent and
complete classification of a part of the subgroofpspace groups (Hermann, 1929, p. 534). Thus, in
1926, to bring forward his research program, Weisesy had to cope with a kind of group-
theoretical problems which, until then, had notrbeé much interest to crystallographer: how to
classify regular point systems by decomposing tiv@m subsystems transforming into each other
under a symmetry leaving invariant the system agale. It was in all probability this kind of
problems which Weissenberg expected Wigner to dolveim, and it was in this way that Wigner,
thanks to von Neumann's advice, discovered thes talich mathematicians had developed to
deal with such questions: the theory of group regm&ations. Wigner never published any results of
the group-theoretical computations undertaken wienrking for Weissenberg, but his recollections
on the subject are quite vivid and, even thougly treeve often been cited, it is worth quoting them

here once more;:
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My boss, Dr. Weissenberg, also did fine work. Hented to learn why atoms hold

positions in the crystal lattice corresponding ymmetry axes and planes. He told me

to read up on group theory, try to resolve thisstjoas, and then report to him. "Here is

Weber'sAlgebra" he would say. "Read it and then prove to me stale positions in

crystals are symmetry point&"

| spent about three weeks reading Weber's book émahd a crude solution. Though

Weissenberg was a fine crystallographer, he hdadligwed my answer. He told me it

was not general enough and sent me back to refine i

This grew into a routine. Weissenberg gave me 8bamed to be simple problems to

solve. Theywere simple to solve in an elementary way. But then $&enberg would

look into my answers and ask for more elegant oflesugh | often doubted | could do

better, the search for a suitable elegance lednereasingly deeper into group theory.

[...] In group theory, Weissenberg gave me one lfzigkasperating problem. | worked

diligently at it and got exactly nowhere. So | tednfor help to my childhood friend

from Budapest, Jancsi von Neumann. [...] Jancssidened my group theory problem

for about half an hour's time. Then he said, "Jé&mé,involves representation theory".

Jancsi gave me a reprint of a decisive 1905 [siio¢la by Frobenius and Schur. [...]

This reprint was my primary introduction to repmaseion theory, and | was charmed

by its beauty and clarity. | saved the article imany years out of a certain piety that

these things create. (Wigner, 1992, p. 104-107)
In the writings he published in 1926-1927, Wignet not cite any joint paper by Georg Ferdinand
Frobenius and Issai Schur. However, Frobenius afdirSonly wrote two papers together, both
published in the 1906 (!) issue of the Proceedioigthe Koniglich Preussischen Akademie der
Wissenschaftelf Both papers dealt with the theory of group repres@ms, the first one was "On
the real representations of finite groups”, while second one had the title "On the equivalence of
groups of linear substitutions” (Frobenius and $ch@06a and 1906b) and was cited by Weyl in
his textbook on "Group theory and quantum mechaifiteyl, 1928, p. 126 and p. 277). It remains
open to discussion which of the two papers Wigmesgrved with such piety, although the first one
had a more introductive character.

It would lead us too far, if we tried to exploreesgic hypotheses on how Wigner's problem

12 Heinrich Weber's "Lehrbuch der Algebra" was at tinee the standard textbook for algebra and grogorh in
German language (Wussing, 1969, p. 184). Webeodotred group theory in the second volume of hithtek
(Weber, 2nd ed. 1899), but he did not discusshbery of group representations, which was develdgptdbeen the
last decades of the nineteenth century and thg seehtieth century.

13 The papers of Frobenius and Schur are collectsplergively in: Frobenius, 1968; Schur, 1973 (onusshjoint
papers with Frobenius see the remark in Schur, 183131, p. V).
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might have looked like and how the Frobenius/Sgbaper might have helped him solve it.

However, | have gone into some detail in discusaMegissenberg's research beyond Wigner's
scanty reference to "symmetry axes and planes™grulip theory”, as | believe that it provides
important elements to understand the origin of Witggroup-theoretical arguments. Although it is
true that Wigner only learnt about representatioty from von Neumann, this is still only half of
the story: the other, essential half of the histdrand epistemological picture is that Wignemea

to know representation theory along a path thatartam aware of a specific kind of questions that
could be asked and answered with its help. As wall See in the next section, there were
remarkable structural similarities between the lkohgroblems Wigner tackled when working with

Weissenberg and his later use of group theoryamit spectroscopy.

9. Wigner's use of group theory in explaining sedecrules as a signature of symmetry (1926-
1927)

In section 5 above, we left Heisenberg and Dirainthg - but not proving - the impossibility of
transitions between quantum states described byeviamctions with different transformation
properties with respect to permutations of idemtp=ticles. To prove this claim, as Dirac and
Heisenberg noted, one would have had to classifyewanctions according to how they behaved
under permutation: a trivial task for the casevad particles, but already complex for3. Given
Wigner's background as discussed in the previoasoss, it is hardly surprising that he realized
how the problem of classifying the solutions of &chnger's equation according to their
permutation symmetry properties could be solvedgbgup-theoretical methods, in particular
representation theory. Wigner immediately set hlfrtsework and, on November 12th, submitted
to Zeitschrift fur Physikthe first part of a study on "Non-combining termsthe new quantum
theory”, in which an explicit computation for=3 was given and a general solution was
announced (Wigner, 1927a). The second part ofttidysvas submitted only two weeks later, and
it contained a rigorous - although relatively alrec- group-theoretical proof of Dirac's and
Heisenberg's claim (Wigner, 1927D).

At this point, one might say that it "only" remadhfor Wigner to generalize his approach
from permutations to generic linear transformationst, this further step was at the time anything
but obvious, and the fact that Wigner took it repreged an innovative breakthrough setting in
motion the synergy between selection rules andpythaory. A generalization from permutations
to other linear transformation was at the timeaintious because permutations seemed to stand on

a different epistemological footing than other syetnes. Pauli's exclusion principle was regarded
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as expressing a significant, if obscure, physlaal, and the newly established connection

between that principle and permutation symmetry thasefore regarded as a decisive, unique step
towards understanding the non-classical featuregiantum systems. As for rotation symmetry and
symmetry arguments in general, however, there veageason to consider them as a promising
starting point for gaining a deeper understandihgu@antum mechanics. Moreover, as we have
seen, selection rules were by this time considasedhther uninteresting from the theoretical point
of view.

Wigner, however, knew that, in crystallographypup-theoretical properties of linear
transformations allowed to predict the regularrdiffion patterns on the basis of the transformation
properties of a given crystal lattice. While wiok on quantum permutations, he became aware
that the situation in quantum mechanics was incgla very similar, due to the linearity of
Schrédinger's equation. The considerations whicth been valid for permutations of particle

positionsx; could be extended to rotations and mirror inversiand Wigner did so in his next

paper: "Some conclusions from Schrodinger's thémryhe structure of [spectral] terms" (Wigner,

1927c). The paper began with the words:

The simple form of Schrddinger's differential egoiatallows the application of some
methods of groups, more precisely, of the theorgepfesentations. [...] In this way, it

is possible to explain a large part of our qudliespectroscopic experiente.

Wigner stated clearly his aim: explaining spectopsc evidence, and particularly the selection
rules for azimuthal and magnetic quantum numbeithowt however dealing with the "spinning
electron" (Wigner, 1927c, pp. 624-625, p. 643, fp8-694). He subdivided his paper into a
"general" and a "special" part and, in the firseohe set the group-theoretical stage for the later

computations. Given a generic functigx{, %, ...%,), he assumed its variablesto undergo a
generic linear transformation into the new variabde= R(x). The functiony (x4, xo, ...%;) would
then transform intoy(R0q, Xo, ...%y). If the function y(xq, %o, ...x)) was a solution of
Schrédinger's eigenvalue equation for enerdye. H(y, ¢) = 0), and if alsoy(R(q, X9, ..-%;)

turned out to be a solution of the same equatleem bne could state that the transformaRomas
contained in the symmetry group of the differenéguationH(y, ¢) = 0 (Wigner, 1927c, p. 626).

Thus, Wigner associated with each type of Schraireguation a symmetry group, just like in

14 "Die einfache Gestalt der Schrédingerschen Bfféalgleichung gestattet die Anwendung einigethiidden der
Gruppen , genauer gesagt, der Darstellungsthdorjes ist auf dieser Weise mdglich, einen grolReih unserer
gualitativen spektroskopischen Erfahrung zu erkiafgVvigner, 1927c, p. 624).
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crystallography each crystal lattice was linkedwétspace group.

Since the Schrodinger equation was itself linaader a linear transformation its solutions
became linear combinations of each other. In grbory, Wigner explained, the coefficients of
such linear combinations were called "represematiof the relevant group (Wigner, 1927c, p.
627). He then introduced the notion of "irreducil@@resentations”, which | shall not discuss here
further, and showed how one could classify thetsmis of a given Schrédinger equation in terms
of the irreducible representations of the symmegngup of the equation (Scholz, 2006, pp. 448-
451, Wigner, 1927c, p. 629). Each complete, linesdiependent set of solutions corresponding to
the same energy transformed according to one oirtb@ucible representations of the symmetry
group, so that its members only combined with eaitier under any transformation leaving the
Schrédinger equation invariant.

Wigner offered a first example of how such a grthgoretical classification would be
physically significant: the case of a system sul@d¢o a perturbation which reduced its symmetry
to a subgroup of the original group. (Wigner, 1927js. 632-633) For example, an external field
introduced a privileged direction and thus brokbesjcal invariance, leaving a residual rotation
symmetry with respect to its direction. As a consape, each set of same-energy-solutions of the
unperturbed equations split into subsets of diffeemergy, each of which transformed according to
an irreducible representation of the residual syimyngroup. One could estimate the energy
splitting by expressing the representations ofdhginal group in terms of those of the residual
subgroups (Wigner, 1927c, p. 633). It is not diffico see how similar this reasoning was to the
kind of problems that Wigner had earlier tackledd aventually solved with the help of
representation theory, when he was working with 88&mberg. It is in this sense that, earlier on, |
claimed that the path taken by Wigner on his wayetrning representation theory was just as
important as the fact that he eventually learned that specific path made him aware of the
potential physical applications of the theory. Ths® of representation theory played a key role in
Wigner's paper, which devoted much space to spectebectric, magnetic and crossed electric and
magnetic fields (Wigner, 1927c, pp. 643-652).

In the "special" part of the paper, Wigner beggridting all symmetries which came into
guestions as possible symmetry groups of the Soigédequation in different physical contexts:
permutations, rotations in three-dimensional spawéh or without a privileged axis - and mirror
inversions. As | have already noted, Wigner's éttanto mirror transformations can be connected
to his experience in crystallography, where theyenan essential component of space groups. A
summary of Wigner's results in modern terms hasadly been given by various authors (Mehra et

al., 2000, pp. 492-496, Scholz, 2006). | will fecan some peculiarities of Wigner's computations
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which are particularly revealing of his style oirtking. Since all computations were based on the

same formula, | will only discuss those valid irsabce of external field.

If no external force is acting on a system, Wigsedd, the symmetry groupof the relevant
Schrédinger equation will include all rotationsveey fixed the origin of the coordinate system, as
well as all mirror transformations with respecttbh@ same point. Given any inteder which is
here purely a group-theoretical parameter - tleaist two irreducible representation of the group
R, each containin@l+1 linearly independent elements. One representaiioresponds to proper
rotations, the other to improper ones, which inel@amirror inversion (Wigner, 1927c, p. 636).
Wigner computed explicitly the coefficients of thepresentations d® for a generic value dfand,
as he himself noted in later a correction to thpepacommitted a serious error, forgetting some
terms in the expressions (Wigner, 1927c, pp. 638-68igner, 1927d). Without noticing his
mistake, Wigner went on to try and derive the s&acrule for the group-theoretical paramelter
which he already planned to identify with the azihal quantum numbé&Wigner, 1927c, pp. 641-
643). To describe the intensity of a radiationcess, he used the absolute value of the usualedipol
formula from wave mechanics, which he wrote in(tfa¢her sketchy) form:
| Ix wj vy | (Wigner, 1927c, p. 641).

The variablex represented here one coordinate of any of thdretlecand, following Heisenberg,
Wigner assumed it to be proportional to the comaesing component of the electric dipole moment
("lineare Polarisation”) due to that electron (Wagn1927c, p. 641-642). The indexiesnd k
corresponded to two different values of the grdwgmtetical parametdérand Wigner's aim was to
show that, unless and k satisfied specific conditions, the integral wowanish, leading to a
selection rule assigning intensity zero to (i.eattetically forbidding) that transition. For claritt
may be useful to write down the integral in a mexplicit form:

X wi(Xa, oo %) Wie(Xa, ooy %) O .0,

Here, | have chosen as x the variableas Wigner noted, the value of the integral issame for
any choice of xand need therefore be computed only once (Wigh827c, p. 842). The
straightforward group-theoretical approach to sahie problem would have been to consider the
transformation properties of Mnder rotations, and argue from there at an aligiraap-theoretical

|.l5

level.” Wigner, instead, took another path: he used thdigiixporm of the transformation

coefficients which he had previously computed torfolate a very convoluted argument in which

15 The full-fledged group-theoretical argument wasegi first by Weyl in his textbook "Gruppentheoriedu
Quantenmechanik" (Weyl, 1928, pp. 157-158). Theophinges on the fact that the integral is difféarfrom zero
only if the group-theoretical product of the tweresentations corresponding respectivelyfit@ndwk contains at

least one element which transforms like X, i.ee like component of a vector. Such a term existgibril— k=0 or
.
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some of the variables, xvere expressed in terms of the parameters defiaiggneric rotation

(Wigner, 1927c, pp. 641-644). Wigner's argumentlexed the fact that the dependence of the
functions y; andy) from the variables;xwas subject to specific restrictions due to tlyeaup-

theoretical transformation properties. By takingpiaccount these restrictions when computing the
dipole integral, one could see that it would béedént from zero only for certain values bandk.
The reasoning, which | shall not discuss here mitjevas carried out by visually representing and

manipulating then variables xasn points in three-dimensional space, and in my opirsbowed

how well Wigner could cope with such complex geainat problems, partly thanks to his own
talent and partly to his experience in X-ray crijsgagaphy. However, this method of computation
is also evidence that, at this stage, Wigner btlll a relatively small grasp of the power of the
abstract group theory of the mathematicians.

In the end, using his (wrong) coefficients, Wigneuld prove that the integral was different
from zero only for transitions— kwherei — k=41 = £1. As we have seen above, this result fitted
spectroscopic evidence on the azimuthal quantunbegnand Wigner remarked that it constituted
an improvement with respect to the theoretical asapons of Heisenberg, Born and Jordan,
because it excluded transitions wittl = 0 (Wigner, 1927c, p. 641, note 2)his fact, he said,
confirmed the identification of his group-theoratigparameterd with the azimuthal quantum
number usually indicated by the same letter, winals known to obey the selection rulle= £1 . In
fact, though, the absence dt = 0 transitions was only due to Wigner's above-mentione
computational mistake: by adding the missing tefmesyould later obtain the correct result= 0,
+1, in accordance with the fact that, since spin a$ taken into account, the group-theoretical
parametet must be regarded as corresponding to the quantunibemnrepresenting total angular
momentum, i.ej, whose selection rule igj = 0, £1 (Wigner, 1927d).

Wigner's error suggests that, while computing riqeresentation coefficients, he already
had his aim in mind: reproducing the selectionsule= £1. Thus, when he (erroneously) obtained
this result, he felt satisfied that it was corraatigner used group theory - and mathematics in
general - as an effective tool to connect to expenital evidence, and not as a means of exploring
and refining the formal structures of quantum med®w as mathematicians like Weyl or von
Neumann would do. It was this peculiar approachctvied Wigner to take an interest in the
"empirical” selection rules and connect them wité structures of group theory. In this way, a very
fruitful heuristic method which had emerged in tentext of the old quantum theory could be
taken over into the new quantum mechanics. Thusy dfaving passed from the status of a
theoretical notion to that of a purely empiricakpnspectroscopic selection rules had now found a

new connection to mathematical physics. Even thdbgtselection rules of empirical spectroscopy
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were in principle something distinct from thosegodup-theoretical analysis, the first ones could

be regarded as the observable signature of thexdemwes - just like the "absences"” and "selection
rules" of X-ray crystallography were the visibleédance of inner crystal symmetries. | would like
to suggest that it was precisely this ambiguity #ilwed the notion of "selection rules” to deyelo
into a productive means of connecting theory anzkarent.

10. Epilogue: Selection rules, conservations laméssymmetry arguments

In 1913, Bohr had introduced the notions of stargrstates and quantum transitions, as well as the
frequency conditions linking the two. SubsequerBghr's model had been expanded into a theory
which led to the interpretation of some spectraemms of "missing lines". To account for these,
physicists proposed theoretically-based "seleqtiamciples”. Eventually, this theoretical scheme to
fit spectroscopic data to a theory came to work a@isthe opposite direction: having theoretically
assumed that spectra could be interpreted in tefhggiantum numbers and selection principles,
one could use them to formulate hypotheses on Hwget quantum numbers and selection
principles should look like. Thanks to group theatlyis deceptively simple interpretive scheme
could be taken over in expanded form into quantuechanics, and eventually also in quantum
field theory. The encounter between spectrosceplection rules and group theory in atomic
spectroscopy provided the template for a new kinsymmetry argument, in which the observable
signature of a (known or unknown) symmetry is saugtihe form of a "selection rule": a missing
radiation frequency, decay or scattering produchis heuristic scheme relies on two general
theoretical premises - quantum states and periueb&tansitions - and can be used to connect
theory and experiment starting from both directiodse can employ it to classify experimental
data, individuating regularities and interpretihgr in terms of group representations. On the other
hand, one can tentatively assume the validity afesssymmetries, formulate predictions in terms of
guantum states and allowed transitions, and conthare with experiment.

Moreover, Wigner himself showed how this kind ofument can be linked to the quantum
equivalent of the classical connection between sgtrigs and conservation laws. In early 1928, he
published a short study "On conservation laws imanqum mechanics" in which the connection
between conservation laws and symmetries in quardgystem was explicitly stated (Wigner,
1928). This relation had been known already in matrechanics, but, once again, Wigner was the
first one to draw attention to its wide-ranging picgl implications, as for example the possibility
of defining a new, purely quantum-theoretical consd quantity, later known as "parity” (Wigner,

1928, p. 387). Thanks to the encounter of selectidas and group theory, many other new
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physical quantities would follow later on, as foraeple baryon number, strangeness, charm or

beauty (Michel, 1989).
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